中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示

王忠强, 李超, 张定才, 江小均, 周利敏, 严清高. 滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示[J]. 岩矿测试, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117
引用本文: 王忠强, 李超, 张定才, 江小均, 周利敏, 严清高. 滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示[J]. 岩矿测试, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117
Zhong-qiang WANG, Chao LI, Ding-cai ZHANG, Xiao-jun JIANG, Li-min ZHOU, Qing-gao YAN. Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China[J]. Rock and Mineral Analysis, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117
Citation: Zhong-qiang WANG, Chao LI, Ding-cai ZHANG, Xiao-jun JIANG, Li-min ZHOU, Qing-gao YAN. Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China[J]. Rock and Mineral Analysis, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117

滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示

  • 基金项目:
    国家自然科学基金项目(41673060,41873065)
详细信息
    作者简介: 王忠强, 硕士研究生, 从事矿物学、地球化学研究。E-mail:kmustwzq@126.com
    通讯作者: 李超, 博士, 副研究员, 从事同位素地球化学研究。E-mail:Re-Os@163.com
  • 中图分类号: O628

Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China

More Information
  • 南秧田钨矿床位于滇东南老君山W-Sn矿集区,地处扬子地块和印支地块的结合部位,地质背景复杂并遭受了多期岩浆活动和区域变质事件,其成矿时代和成因一直存在争议。本文对矽卡岩型和长石-石英脉型白钨矿开展了年代学、原位微量元素、Sr同位素研究,分析了两类白钨矿年龄、成因以及物质来源的差异。结果表明,长石-石英脉内与白钨矿共生辉钼矿的Re-Os同位素等时线年龄为151.0±1.3Ma,明显晚于矽卡岩矿体年龄,属于后期成矿事件。矽卡岩型白钨矿的轻稀土富集、重稀土强烈亏损,Eu呈明显负异常(δEu=0.46),∑REE平均含量为65.60μg/g,Mo平均含量为240.16μg/g,Sr平均含量为883.43μg/g;长石-石英脉型白钨矿稀土呈Eu正异常(δEu=2.8)的平坦型,∑REE平均含量为194.40μg/g,Mo平均含量为16.01μg/g,Sr平均含量为129.26μg/g。以上两者微量、稀土元素含量的差别显示它们具有性质明显不同的流体来源,Eu异常指示矽卡岩型白钨矿形成于氧逸度较高的环境,长石-石英脉型白钨矿形成于还原性环境。矽卡岩白钨矿87Sr/86Sr值相对较低,并且比较均一,介于0.71319~0.71491之间,表明成矿流体主要来自岩浆热液;长石-石英脉型白钨矿87Sr/86Sr值较高且变化范围大,介于0.71537~0.72803之间,平均0.72079,呈现出变质流体特征。两种不同类型白钨矿Sr同位素都具有二元混合的特征,显示长石-石英脉型白钨矿对矽卡岩型白钨矿有叠加改造作用,成矿流体与围岩的强烈交代作用是白钨矿形成的关键。
  • 加载中
  • 图 1  南秧田钨矿床地质图(据冯佳睿等[16]、李建康等[17]修改)

    Figure 1. 

    图 2  南秧田钨矿床样品特征

    Figure 2. 

    图 3  长石-石英矿脉中辉钼矿等时线年龄图

    Figure 3. 

    图 4  白钨矿稀土、微量元素以及Sr同位素比值特征(含矿矽卡岩稀土数据来源文献[22])

    Figure 4. 

    表 1  长石-石英脉中辉钼矿Re-Os同位素分析结果

    Table 1.  Re-Os isotope analytical results of molybdate in feldspar-quartz veins

    样品编号 样品质量
    (g)
    Re(μg/g) 普Os(ng/g) 187Re(μg/g) 187Os(ng/g) 模式年龄(Ma)
    测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ
    NYTS-16-1 0.00304 60.93 0.460 0.0309 0.0024 38.29 0.289 95.71 0.59 149.8 2.1
    NYTS-16-2 0.02081 197.6 1.723 0.5608 0.0454 124.2 3.768 313.7 2.1 151.4 2.3
    NYTS-16-3 0.01190 235.0 2.141 0.5961 0.0178 147.7 1.346 373.6 2.3 151.7 2.2
    NYTS-16-4 0.00309 213.1 1.678 0.1013 0.0077 133.9 1.055 333.9 2.0 149.4 2.1
    NYTS-16-5 0.00313 246.2 2.146 0.1744 0.0076 154.8 1.349 390.0 2.8 151.1 2.3
    下载: 导出CSV

    表 2  白钨矿中稀土元素含量测定结果

    Table 2.  Anaytical results of rare earth elements in scheelite

    白钨矿类型 样品编号 元素含量(μg/g) δEu
    Mo Sr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE
    矽卡岩型 NYTX-5-01 300.1 1202 0.15 8.21 28.80 5.73 24.13 1.18 0.07 0.73 0.03 0.05 0.01 0.03 < LOD < LOD 0.01 68.98 0.24
    NYTX-5-02 295.2 1332 0.24 18.60 52.48 8.57 36.18 2.20 0.15 0.85 0.04 0.07 < LOD < LOD 0.01 0.04 < LOD 119.18 0.36
    NYTX-5-03 283.7 1197 0.02 6.54 25.21 4.97 22.30 1.56 0.15 0.45 0.06 < LOD < LOD 0.06 < LOD 0.01 < LOD 61.30 0.60
    NYTX-5-04 237.8 1167 0.34 5.71 24.43 5.11 30.62 2.65 0.21 1.33 0.10 0.47 0.03 0.04 < LOD 0.01 < LOD 70.72 0.38
    NYTX-5-05 248.8 1167 0.52 8.33 28.80 4.95 23.28 1.73 0.12 0.68 0.03 0.15 0.03 0.09 < LOD < LOD < LOD 68.20 0.37
    NYTX-5-06 231.6 1191 1.20 7.33 27.39 5.61 32.38 3.49 0.25 1.90 0.18 0.48 0.10 0.23 0.00 0.07 < LOD 79.41 0.33
    NYTX-12-01 246.3 672.1 4.23 4.25 15.53 2.96 18.02 4.17 0.77 3.73 0.38 1.96 0.29 0.62 0.04 0.20 0.02 52.95 0.66
    NYTX-12-02 231.3 607.0 3.24 3.96 15.51 3.32 20.00 4.21 0.48 3.07 0.29 1.73 0.17 0.40 0.06 0.07 0.03 53.30 0.45
    NYTX-12-03 223.5 588.1 4.43 4.66 17.57 3.47 19.00 4.24 0.68 3.80 0.37 1.67 0.29 0.52 0.04 0.20 0.04 56.55 0.58
    NYTX-12-04 191.8 547.5 4.72 4.70 17.99 3.00 15.74 3.04 0.48 2.41 0.18 1.11 0.24 0.46 0.06 0.47 0.03 49.91 0.60
    NYTX-12-05 207.9 520.8 4.87 3.25 14.63 3.31 17.82 4.71 0.65 4.42 0.47 2.36 0.37 0.84 0.07 0.11 0.02 53.05 0.49
    NYTX-12-06 183.8 407.1 4.57 2.68 14.17 3.34 19.77 5.25 0.55 3.82 0.42 2.26 0.37 0.73 0.06 0.16 0.02 53.60 0.42
    长石-石英脉型 NYTS-1-01 19.0 136.0 174.20 7.83 30.75 6.59 41.23 15.67 6.61 16.33 3.50 26.85 5.92 19.34 2.64 15.93 2.16 201.35 1.41
    NYTS-1-02 19.4 106.4 52.82 3.31 8.45 1.54 8.32 3.58 1.59 4.26 1.16 6.40 1.96 5.89 0.77 4.71 0.94 52.87 1.39
    NYTS-1-03 17.8 150.4 91.45 4.75 23.19 5.68 29.20 8.41 7.19 8.28 1.42 10.27 2.66 7.95 1.38 8.33 1.29 119.98 2.94
    NYTS-1-04 21.5 149.9 299.92 41.05 86.35 12.79 62.13 15.88 9.40 17.89 3.64 28.31 7.14 22.83 4.72 34.81 4.72 351.65 1.90
    NYTS-1-05 25.4 147.4 115.65 5.13 29.22 6.12 34.18 9.97 9.09 10.18 1.79 12.52 3.31 8.66 1.66 10.33 1.42 143.58 3.08
    NYTS-1-06 18.5 156.0 78.63 6.28 29.29 6.54 34.74 8.53 8.80 8.56 1.43 8.57 2.19 6.05 0.91 4.96 0.86 127.71 3.51
    NYTS-2-01 17.1 165.3 120.68 16.43 39.71 7.26 42.71 13.38 11.60 16.78 3.98 28.50 6.19 18.28 2.33 11.63 1.44 220.20 2.64
    NYTS-2-02 15.8 181.8 82.32 5.44 26.48 5.87 30.35 8.32 8.43 7.77 1.62 12.49 3.11 10.01 1.50 9.37 1.31 132.06 3.58
    NYTS-2-03 18.2 138.9 195.53 11.58 36.86 8.00 42.80 10.24 11.37 10.68 2.56 18.15 4.43 17.55 3.84 35.18 5.12 218.36 3.71
    NYTS-2-04 17.4 139.1 331.40 50.60 232.17 16.05 63.10 14.95 12.72 14.35 2.84 23.03 6.50 26.72 5.35 54.33 7.82 530.55 2.96
    NYTS-2-05 24.2 229.1 379.33 59.31 137.24 19.31 72.11 15.77 9.86 17.64 3.78 33.46 8.80 35.80 6.48 50.59 6.27 476.44 2.02
    NYTS-2-06 36.6 233.8 30.11 0.57 2.57 0.71 4.22 3.23 0.83 4.28 0.98 6.18 1.51 4.45 0.62 3.56 0.46 34.16 0.77
    NYTS-16-A01 7.2 80.9 104.49 15.83 64.67 9.43 44.49 9.55 8.90 10.71 1.74 12.00 2.89 8.07 0.89 4.63 0.71 194.51 3.00
    NYTS-16-A02 9.9 78.8 84.31 24.08 49.34 8.61 40.72 9.13 10.06 8.91 1.57 10.65 2.45 6.68 0.75 3.72 0.54 177.21 3.80
    NYTS-16-A03 8.0 75.5 216.48 17.77 78.41 11.97 60.53 17.28 10.48 20.42 3.80 27.34 6.30 17.84 2.13 11.33 1.80 287.41 1.90
    NYTS-16-A04 8.5 74.2 117.84 20.31 100.61 18.61 78.68 15.98 10.67 14.52 2.58 16.47 3.58 9.60 1.11 5.74 0.71 299.17 2.39
    NYTS-16-A05 9.1 69.0 93.65 22.56 68.14 10.58 46.13 15.18 10.49 9.47 1.57 10.35 2.69 6.78 0.87 3.83 0.62 209.26 2.99
    NYTS-16-A06 9.3 69.1 164.20 58.80 122.66 17.72 73.98 14.31 13.80 13.55 2.26 15.54 3.49 10.22 1.16 6.81 1.05 355.37 3.38
    NYTS-16-B01 14.7 115.9 39.49 1.42 6.00 1.16 7.47 2.46 6.46 3.25 0.67 5.20 1.21 4.01 0.60 4.23 0.72 44.87 7.79
    NYTS-16-B02 12.9 139.4 58.82 3.64 13.09 2.72 18.22 6.37 5.01 8.18 1.53 10.89 2.43 7.31 0.90 5.19 0.72 86.22 2.37
    NYTS-16-B03 13.5 133.5 44.99 2.01 8.90 1.98 14.00 4.96 5.60 6.88 1.30 8.96 2.05 5.56 0.71 4.33 0.66 67.90 3.27
    NYTS-16-B04 11.8 115.6 79.60 5.51 20.36 4.57 34.26 10.83 4.33 12.07 1.88 12.31 2.82 7.75 0.99 6.86 1.11 125.64 1.29
    NYTS-16-B05 12.9 106.3 57.57 4.57 17.56 3.47 25.36 7.21 4.69 8.98 1.53 9.00 2.03 5.58 0.71 4.44 0.79 95.90 1.99
    NYTS-16-B06 15.4 110.0 50.36 14.57 30.26 4.50 26.18 6.14 5.79 6.50 0.97 6.32 1.48 4.32 0.63 4.62 0.85 113.13 3.13
    注:“ < LOD”表示低于检出限。
    下载: 导出CSV

    表 3  白钨矿原位Sr同位素分析结果

    Table 3.  in situ Sr isotope analytical results of scheelite

    白钨矿类型 样品编号 85Rb信号强度(V) 88Sr信号强度(V) 87Rb/86Sr 2 σ 87Sr/86Sr 2 σ
    矽卡岩型 NYTX-5-01 0.0003 10.34 0.00009 0.00004 0.71383 0.00008
    NYTX-5-02 0.0000 10.48 0.00001 0.00001 0.71352 0.00007
    NYTX-5-03 0.0001 9.74 0.00004 0.00004 0.71359 0.00007
    NYTX-5-04 0.0003 9.58 0.00009 0.00005 0.71351 0.00007
    NYTX-5-05 0.0007 10.26 0.00021 0.00004 0.71353 0.00006
    NYTX-5-06 0.0072 11.08 0.00227 0.00041 0.71364 0.00008
    NYTX-5-07 0.0000 11.32 0.00000 0.00001 0.71356 0.00006
    NYTX-5-08 0.0000 11.25 0.00001 0.00001 0.71356 0.00007
    NYTX-5-09 0.0001 11.23 0.00002 0.00001 0.71351 0.00007
    NYTX-5-10 0.0002 7.25 0.00009 0.00001 0.71359 0.00007
    NYTX-5-11 0.0000 10.88 0.00000 0.00001 0.71354 0.00006
    NYTX-5-12 0.0003 10.44 0.00008 0.00003 0.71358 0.00007
    NYTX-5-13 0.0006 9.95 0.00021 0.00005 0.71359 0.00007
    NYTX-5-14 0.0098 8.76 0.00393 0.00060 0.71384 0.00010
    NYTX-5-15 0.0014 9.61 0.00048 0.00006 0.71354 0.00008
    NYTX-12-01 0.0002 3.32 0.00021 0.00004 0.71491 0.00011
    NYTX-12-02 0.0002 6.12 0.00011 0.00002 0.71339 0.00007
    NYTX-12-03 0.0004 6.43 0.00019 0.00003 0.71336 0.00007
    NYTX-12-04 0.0001 5.28 0.00008 0.00002 0.71354 0.00008
    NYTX-12-05 0.0003 3.02 0.00036 0.00004 0.71429 0.00011
    NYTX-12-06 0.0003 4.85 0.00021 0.00003 0.71349 0.00010
    NYTX-12-07 0.0001 5.53 0.00008 0.00001 0.71319 0.00010
    NYTX-12-08 0.0002 5.13 0.00013 0.00002 0.71349 0.00011
    NYTX-12-09 0.0002 2.57 0.00032 0.00003 0.71478 0.00015
    NYTX-12-10 0.0005 4.17 0.00044 0.00013 0.71374 0.00013
    NYTX-12-11 0.0003 3.39 0.00034 0.00006 0.71385 0.00012
    NYTX-12-12 0.0929 3.59 0.08473 0.01206 0.71401 0.00014
    NYTX-12-13 0.0003 5.54 0.00020 0.00003 0.71357 0.00010
    NYTX-12-14 0.0007 4.42 0.00051 0.00011 0.71389 0.00011
    NYTX-12-15 0.0007 5.15 0.00044 0.00003 0.71353 0.00009
    长石-石英脉型 NYTS-1-A01 0.0026 1.41 0.00589 0.00039 0.72027 0.00021
    NYTS-1-A02 0.0033 1.33 0.00804 0.00071 0.72014 0.00027
    NYTS-1-A03 0.0025 0.90 0.00968 0.00198 0.72135 0.00035
    NYTS-1-A04 0.0050 1.18 0.01394 0.00101 0.72072 0.00032
    NYTS-1-A05 0.0046 1.34 0.01109 0.00094 0.72043 0.00023
    NYTS-1-A06 0.0014 1.29 0.00369 0.00028 0.72094 0.00022
    NYTS-1-A07 0.0019 1.24 0.00506 0.00036 0.72106 0.00025
    NYTS-1-A08 0.0014 1.18 0.00409 0.00032 0.72061 0.00026
    NYTS-1-A09 0.0038 1.09 0.01114 0.00090 0.72085 0.00030
    NYTS-1-A10 0.0017 1.11 0.00518 0.00020 0.72104 0.00031
    NYTS-1-A11 0.0008 1.10 0.00244 0.00013 0.72186 0.00029
    NYTS-1-A12 0.0044 1.13 0.01254 0.00145 0.72168 0.00034
    NYTS-1-A13 0.0013 1.30 0.00348 0.00037 0.72079 0.00024
    NYTS-1-A14 0.0006 1.39 0.00149 0.00026 0.71923 0.00028
    NYTS-1-A15 0.0017 1.24 0.00420 0.00039 0.72066 0.00022
    NYTS-1-B01 0.0022 2.35 0.00338 0.00125 0.71604 0.00014
    NYTS-1-B02 0.0014 2.17 0.00213 0.00021 0.71584 0.00016
    NYTS-1-B03 0.0033 2.14 0.00510 0.00031 0.71613 0.00015
    NYTS-1-B04 0.0039 2.40 0.00530 0.00042 0.71693 0.00014
    NYTS-1-B05 0.0019 2.23 0.00272 0.00010 0.71618 0.00015
    NYTS-1-B06 0.0021 2.49 0.00293 0.00036 0.71649 0.00016
    NYTS-1-B07 0.0028 2.28 0.00394 0.00038 0.71666 0.00015
    NYTS-1-B08 0.0028 2.15 0.00449 0.00093 0.71622 0.00015
    NYTS-1-B09 0.0013 2.37 0.00174 0.00009 0.71537 0.00013
    NYTS-1-B10 0.0010 2.47 0.00138 0.00016 0.71589 0.00017
    NYTS-1-B11 0.0007 2.67 0.00084 0.00007 0.71588 0.00011
    NYTS-1-B12 0.0030 2.74 0.00355 0.00031 0.71601 0.00011
    NYTS-1-B13 0.0018 2.82 0.00231 0.00026 0.71636 0.00023
    NYTS-1-B14 0.0039 1.29 0.00978 0.00060 0.71716 0.00023
    NYTS-1-B15 0.0065 1.72 0.01303 0.00185 0.71724 0.00018
    NYTS-2-01 0.0018 1.45 0.00402 0.00025 0.72024 0.00018
    NYTS-2-02 0.0005 1.45 0.00120 0.00019 0.72020 0.00018
    NYTS-2-03 0.0005 1.48 0.00108 0.00007 0.71906 0.00019
    NYTS-2-04 0.0006 1.47 0.00126 0.00011 0.71918 0.00020
    NYTS-2-05 0.0004 1.27 0.00108 0.00007 0.72151 0.00023
    NYTS-2-06 0.0007 1.27 0.00170 0.00014 0.72158 0.00021
    NYTS-2-07 0.0016 1.29 0.00412 0.00022 0.72105 0.00021
    NYTS-2-08 0.0016 1.30 0.00404 0.00061 0.72108 0.00023
    NYTS-2-09 0.0008 1.39 0.00192 0.00020 0.72372 0.00022
    NYTS-2-10 0.0015 1.45 0.00351 0.00031 0.72230 0.00019
    NYTS-13-01 0.0004 1.05 0.00125 0.00009 0.72803 0.00029
    NYTS-13-02 0.0009 0.94 0.00312 0.00031 0.72764 0.00032
    NYTS-13-03 0.0001 0.97 0.00039 0.00008 0.72694 0.00026
    NYTS-13-04 0.0001 1.02 0.00034 0.00007 0.72614 0.00028
    NYTS-13-05 0.0003 0.95 0.00119 0.00007 0.72705 0.00024
    NYTS-13-06 0.0003 0.87 0.00096 0.00008 0.72757 0.00028
    NYTS-13-07 0.0001 0.82 0.00055 0.00008 0.72719 0.00030
    NYTS-13-08 0.0032 0.91 0.01163 0.00189 0.72769 0.00033
    NYTS-13-09 0.0007 0.78 0.00271 0.00018 0.72774 0.00036
    NYTS-13-10 0.0005 0.75 0.00204 0.00037 0.72756 0.00034
    标准样品 XJSSTD(n=8) 0.0000 6.48 0.00001 0.00002 0.72086 0.00015
    下载: 导出CSV
  • [1]

    Lecumberri-Sanchez P, Vieira R, Heinrich C A, et al.Fluid-rock interaction is decisive for the formation of tungsten deposits[J].Geology, 2017, 45(7):579-582. doi: 10.1130/G38974.1

    [2]

    Wu D, Liu Y, Chen C, et al.In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the Northern North China Craton[J].Lithos, 2017, 288-289:338-351. doi: 10.1016/j.lithos.2017.07.018

    [3]

    Christensen J N, Halliday A N, Lee D C, et al.In situ Sr isotopic analysis by laser ablation[J].Earth & Planetary Science Letters, 1995, 136:79-85. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201802006

    [4]

    Ramos F C, Wolff J A, Tollstrup D L.Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS[J].Chemical Geology, 2004, 211(1-2):0-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a071ddcd0b4e05bd8c22894d0b27153d

    [5]

    Schmidberger S S, Simonetti A, Heaman L M, et al.Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine:Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada[J].Earth & Planetary Science Letters, 2007, 254(1-2):0-68. http://www.sciencedirect.com/science/article/pii/S0012821X06008211

    [6]

    杨岳衡, 吴福元, 谢烈文, 等.地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J].岩石学报, 2009, 25(12):331-341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912028

    Yang Y H, Wu F Y, Xie L W, et al.In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J].Acta Petrologica Sinica, 2009, 25(12):331-341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912028

    [7]

    Zhao X F, Zhou M F, Gao J F, et al.In situ Sr isotope analysis of apatite by LA-MC-ICPMS:Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China[J].Mineralium Deposita, 2015, 50(7):871-884. doi: 10.1007/s00126-015-0578-z

    [8]

    谭洪旗, 刘玉平.滇东南猛洞岩群构造环境:变质碎屑岩地球化学约束[J].地质学报, 2017, 91(7):1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002

    Tan H Q, Liu Y P.Tectonic setting of the Mengdong Group Complex, Southeast Yunnan Province:Geochemical constraints from metasedimentary rocks[J].Acta Geologica Sinica, 2017, 91(7):1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002

    [9]

    张世涛, 冯明刚, 吕伟.滇东南南温河变质核杂岩解析[J].中国区域地质, 1998, 17(4):390-397. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD804.008.htm

    Zhang S T, Feng M G, Lü W.Analysis of the Nanwenhe metamorphic core complex in Southeastern Yunnan[J].Regional Geology of China, 1998, 17(4):390-397. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD804.008.htm

    [10]

    谭洪旗, 刘玉平.滇东南猛洞岩群变质-变形研究及构造意义[J].地质学报, 2017, 91(1):15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002

    Tan H Q, Liu Y P.Metamorphism and deformation of the Mengdong group-complex in Southeastern Yunnan Province and their tectonic implications[J].Acta Geologica Sinica, 2017, 91(1):15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002

    [11]

    Xu B, Jiang S Y, Wang R, et al.Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions[J].Lithos, 2015, 218-219:54-72. doi: 10.1016/j.lithos.2015.01.004

    [12]

    Zhou X, Yu J H, O'Reilly S Y, et al.Sources of the Nanwenhe-Song Chay granitic complex (SW China-NE Vietnam) and its tectonic significance[J].Lithos, 2017, 290-291:76-93. doi: 10.1016/j.lithos.2017.07.017

    [13]

    刘玉平, 李正祥, 李惠民, 等.都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件[J].岩石学报, 2007, 23(5):967-976. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200705011.htm

    Liu Y P, Li Z X, Li H M, et al.U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for Cretaceous large-scale granitic magmatism and mineralization events in Southeastern Yunnan Province, China[J].Acta Petrologica Sinica, 2007, 23(5):967-976. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200705011.htm

    [14]

    冯佳睿, 毛景文, 裴荣富, 等.云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨[J].岩石学报, 2010, 26(3):845-857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003017

    Feng J R, Mao J W, Pei R F, et al.HRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J].Acta Petrologica Sinica, 2010, 26(3):845-857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003017

    [15]

    刘艳宾, 莫宣学, 张达, 等.滇东南老君山地区白垩世花岗岩的成因[J].岩石学报, 2014, 30(11):3271-3286. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201411013.htm

    Liu Y B, Mo X X, Zhang D, et al.Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan Region, Southeastern Yunnan Province[J].Acta Petrologica Sinica, 2014, 30(11):3271-3286. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201411013.htm

    [16]

    冯佳睿, 毛景文, 裴荣富, 等.滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例[J].矿床地质, 2011, 30(1):57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006

    Feng J R, Mao J W, Pei R F, et al.A tentative discussion on Indosinian ore-forming events in Laojunshan area of Southeastern Yunnan:A case study of Xinzhai tin deposit and Nanyangtian tungsten deposit[J].Mineral Deposits, 2011, 30(1):57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006

    [17]

    李建康, 王登红, 李华芹, 等.云南老君山矿集区的晚侏罗世-早白垩世成矿事件[J].地球科学, 2013, 38(5):1023-1036. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201305014.htm

    Li J K, Wang D H, Li H Q, et al.Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J].Earth Science, 2013, 38(5):1023-1036. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201305014.htm

    [18]

    Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [19]

    Li C, Zhou L, Zhao Z, et al.In-situ Sr isotopic measure-ment of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025

    [20]

    李超, 杨雪, 赵鸿, 等.pg-ng级Os同位素热表面电离质谱高精度分析测试技术[J].岩矿测试, 2015, 34(4):392-398. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.003

    Li C, Yang X, Zhao H, et al.High precise isotopic measurements of pg-ng Os by negative ion thermal ionization mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(4):392-398. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.003

    [21]

    冯佳睿, 毛景文, 裴荣富, 等.滇东南老君山南秧田钨矿床的成矿流体和成矿作用[J].矿床地质, 2011, 30(3):403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003

    Feng J R, Mao J W, Pei R F, et al.Ore-forming fluids and metallogenesis of Nanyangtian tungsten deposit in Laojunshan, Southeastern Yunnan Province[J].Mineral Deposits, 2011, 30(3):403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003

    [22]

    曾志刚, 李朝阳, 刘玉平, 等.老君山成矿区变质成因夕卡岩的地质地球化学特征[J].矿物学报, 1999, 19(1):48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009

    Zeng Z G, Li C Y, Liu Y P, et al.Geology and geochemistry of metamorphogenic skarn from Laojunshan metallogenic province[J].Acta Mineralogica Sinica, 1999, 19(1):48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009

    [23]

    刘玉平, 李正祥, 叶霖, 等.滇东南老君山矿集区钨成矿作用Ar-Ar年代学[J].矿物学报, 2011(增刊1):617-618. http://d.old.wanfangdata.com.cn/Conference/7684868

    Liu Y P, Li Z X, Ye L, et al.Ar-Ar chronology of tungsten mineralization in Laojunshan ore concentration area in Southeast Yunnan[J].Acta Mineralogica Sinica, 2011(Supplement 1):617-618. http://d.old.wanfangdata.com.cn/Conference/7684868

    [24]

    谭洪旗, 刘玉平, 叶霖, 等.滇东南南秧田钨锡矿床金云母40Ar-39Ar定年及意义[J].矿物学报, 2011(增刊1):639-640. http://d.old.wanfangdata.com.cn/Conference/7684858

    Tan H Q, Liu Y P, Ye L, et al.40Ar-39Ar dating of metallomica and its significance from the South Yangtian tungsten-tin deposit in Southeast Yunnan[J]. Acta Mineralogica Sinica, 2011(Supplement 1):639-640. http://d.old.wanfangdata.com.cn/Conference/7684858

    [25]

    曾志刚, 李朝阳, 刘玉平, 等.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376

    Zeng Z G, Li C Y, Liu Y P, et al.REE geochemistry of scheelite of two genetic types from Nanyangtian, Southeastern Yunnan[J].Geological Geochemistry, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376

    [26]

    谭筱虹, 李志均, 杜再飞.滇东南南温河地区深变质岩中似层状白钨矿[J].云南地质, 2010, 29(4):382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002

    Tan Y H, Li Z J, Du Z F.On the stratoid scheelite of Kata-Metamorphite in Nanwenhe area of SE Yunnan[J].Yunnan Geology, 2010, 29(4):382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002

    [27]

    Sun K K, Chen B.Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi Deposit, South China[J].American Mineralogist, 2017, 102:1114-1128.

    [28]

    Zhao W, Zhou M, Williams-Jones A, et al.Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China[J].Chemical Geology, 2018, 477:123-136. doi: 10.1016/j.chemgeo.2017.12.020

    [29]

    任云生, 赵华雷, 雷恩, 等.延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J].岩石学报, 2010, 26(12):3720-3726. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012022

    Ren Y S, Zhao H L, Lei E, et al.Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area, Northeastern China[J].Acta Petrologica Sinica, 2010, 26(12):3720-3726. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012022

    [30]

    刘善宝, 刘战庆, 王成辉, 等.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J].地学前缘, 2017, 24(5):17-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705003

    Liu S B, Liu Z Q, Wang C H, et al.Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in Northeast Jiangxi[J].Earth Science Frontiers, 2017, 24(5):17-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705003

    [31]

    聂利青, 周涛发, 张千明, 等.安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J].岩石学报, 2017, 33(11):3518-3530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711013

    Nie L Q, Zhou T F, Zhang Q M, et al.Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J].Acta Petrologica Sinica, 2017, 33(11):3518-3530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711013

    [32]

    丁腾, 马东升, 陆建军, 等.湘南黄沙坪多金属矿床花岗斑岩的矿物化学及其对矽卡岩白钨矿成矿的指示意义[J].岩石学报, 2017, 33(3):716-728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703004

    Ding T, Ma D S, Lu J J, et al.Mineral geochemistry of granite porphyry in Huangshaping pollymetallic deposit, Southern Hunan Province, and its implications for metallogensis of skarn scheelite mineralization[J].Acta Petrologica Sinica, 2017, 33(3):716-728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703004

    [33]

    Ding T, Ma D, Lu J, et al.Garnet and scheelite as indica-tors of multi-stage tungsten mineralization in the Huangshaping deposit, Southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94:193-211. doi: 10.1016/j.oregeorev.2018.01.029

    [34]

    闫国强, 丁俊, 黄勇, 等.西藏努日白钨矿床微量和稀土元素地球化学特征——对成矿流体与矿床成因的指示[J].矿物学报, 2015, 35(1):87-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201501014

    Yan G Q, Ding J, Huang Y, et al.Geochemical characteristics of rare earth elements and trace elements in the Nuri scheelite deposit, Tibet, China——Indications for ore-forming fluid and deposit genesis[J].Acta Mineralogica Sinica, 2015, 35(1):87-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201501014

    [35]

    Song G, Qin K, Li G, et al.Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, Eastern China[J].American Mineralogist, 2014, 99(2-3):303-317. doi: 10.2138/am.2014.4431

    [36]

    洪为, 张作衡, 蒋宗胜, 等.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J].岩石学报, 2012, 28(7):2089-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207011

    Hong W, Zhang Z H, Jiang Z S, et al.Magnetite and garnet trace element characteristics from the Chagangnuoer iron deposit in the Western Tianshan Mountains, Xinjiang, NW China:Constrain for ore genesis[J].Ore Geology Reviews, 2012, 28(7):2089-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207011

    [37]

    Brugger J, Lahaye Y, Costa S, et al.Inhomogeneous dis-tribution of REE in scheelite and dynamics of archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, Western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3):251-264. doi: 10.1007/s004100000135

    [38]

    Brugger J, Maas R, Lahaye Y, et al.Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia[J].Chemical Geology, 2002, 182(2):203-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a41e5122ad0d4b8120ce4abe7d9003

    [39]

    王冠, 杜谷, 刘书生, 等.电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例[J].岩矿测试, 2012, 31(6):1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025 http://www.ykcs.ac.cn/article/id/ykcs_20120626

    Wang G, Du G, Liu S S, et al.Accurate determination of rare earth elements in scheelite using high resolution-inductively coupled plasma-mass spectrometry-An instance of Nanyangtian scheelite mining, Malipo, Yunnan[J].Rock and Mineral Analysis, 2012, 31(6):1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025 http://www.ykcs.ac.cn/article/id/ykcs_20120626

    [40]

    Ghaderi M, Palin J M, Campbell I H, et al.Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia[J]. Economy Geology, 1999, 94:423-438. doi: 10.2113/gsecongeo.94.3.423

    [41]

    蔡倩茹, 燕永锋, 杨光树, 等.滇东南南秧田矽卡岩型钨矿床成矿演化[J].矿床地质, 2018, 37(1):116-136. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801009

    Cai Q R, Yan Y F, Yang G S, et al.Evolution of scheelite skarn mineralization at Nanyangtian deposit, Southeast Yunnan Province[J].Mineral Deposits, 2018, 37(1):116-136. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801009

    [42]

    Yan D P, Zhou M F, Wang C Y, et al.Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China[J].Journal of Asian Earth Sciences, 2006, 28(4-6):332-353. doi: 10.1016/j.jseaes.2005.10.011

    [43]

    张斌辉, 丁俊, 任光明, 等.云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J].地质学报, 2012, 86(4):587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005

    Zhang B H, Ding J, Ren G M, et al.Geochronology and geochemical characteristics of the Laojunshan granites in Maguan County, Yunnan Province, and its geological implications[J].Acta Geologica Sinica, 2012, 86(4):587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005

  • 加载中

(4)

(3)

计量
  • 文章访问数:  2124
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2019-08-12
修回日期:  2019-09-17
录用日期:  2019-10-21

目录