Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance
-
摘要:
Alum页岩(中寒武—早奥陶世)是北欧一套重要的海相烃源岩,其成熟度跨度从为成熟-过成熟度阶段。由于我国下古生界海相烃源岩均已过成熟,未成熟-低成熟度的Alum页岩是研究下古海相的烃源岩生烃潜力特征的重要参照样品。因此,对这套成熟度较低的Alum页岩的生物组成特征、矿物组成及其沉积环境的分析,可为后续国内外下古生界海相烃源岩的对比研究奠定基础。本文以欧洲上寒武统富含有机质Alum页岩为主要研究对象,在有机碳含量(TOC)和有机岩石学观察的基础上,应用综合矿物分析技术(TIMA)进行扫描,通过细化样品扫描参数,获得了页岩矿物组成、含量及粒度分布。Alum页岩有机质成熟度较低(固体沥青反射率为0.30),TOC含量在11.16%~12.24%之间。有机质主要为浮游藻类降解形成的层状藻类体、底栖藻类来源的海相镜状体和裂缝中充填的固体沥青。TIMA扫描获得的有机质相对质量百分含量为9.79%~10.64%,略低于碳硫分析仪测定的TOC含量;黄铁矿含量为4.17%~4.49%。TIMA扫描获得的有机质与黄铁矿比值与化学法的C/S比值相近,均分布在2.18~2.55范围。粒径分布特征上,有机质粒径主要分布在0.9~27.0μm之间(80%以上颗粒分布在1.2~5.5μm);草莓状黄铁矿粒径分布在0.9~17.0μm之间(小于0.5μm的颗粒占78%以上),反映了缺氧甚至硫化的环境。综合C/S比、有机岩石学与TIMA黄铁矿粒度分布特征,认为该页岩形成于闭塞封闭甚至硫化的沉积水体体系。该研究为油气地质领域的烃源岩(包括页岩)的研究提供了一种新的技术支持。
Abstract:BACKGROUND Alum shale (Middle Cambrian to Lower Ordovician) is a set of significant marine source rock in Northern Europe, and the maturity is from immature to over mature. Because of high maturities of the Lower-Paleozoic marine source rocks in China, the immature-early mature Alum shales are important samples for the comparative studies of hydrocarbon generation potential. Thus, the analyses of organic matter, mineral composition and sedimentary characteristics of the Alum shale with low maturity, are the fundamental for the comparative studies on the Lower Paleozoic marine source rocks at home and abroad.
OBJECTIVES To uncover the mineral and organic matter compositions, and the sedimentary characteristics of Alum shales.
METHODS Based on the organic carbon content (TOC) and organic petrological observations, the integrated mineral analysis (TIMA) technology was used to scan the sample. Scan parameters were refined to obtain the mineral composition, content and particle size distribution of shale.
RESULTS The TOC and TRS contents of studied Alum shale (%Rb=0.3) were 11.16%-12.24% and 4.30%-5.31%, respectively. The maceral compositions included the lamalginite from planktonic algae degradation and vitrinite-like macerals from benthic algae. Solid bitumen filled in the fractures and pores. The organic matter (OM) and pyrite (Py) contents acquired from TIMA scanning analyses were 9.79%-10.64% and 4.17%-4.49%, respectively. The OM/Py ratios ranged from 2.18 to 2.55, similar to the C/S ratios from Rock-eval pyrolysis. Grain sizes of OM were 0.9-27.0μm, and 80% grains had sizes of 1.2-5.5μm. Grain size of Py distributed from 0.9 to 17.0μm, and the proportion of grains with the size of lower than 0.5μm was higher than 78%, indicating an oxygen-lacking or sulfurized environment.
CONCLUSIONS A combination of C/S ratio, and characteristics of organic petrology and Py grain size distribution indicates the Alum shale was deposited in a closed or sulfurized water system. A new technical support for the research of source rocks (including shale) in the field of petroleum geology is provided through the methods used and discussed in this study.
-
Key words:
- TIMA technique /
- Alum shale /
- mineral composition /
- organic matter /
- pyrite /
- grain size distribution /
- sedimentary environment
-
表 1 欧洲中寒武系Alum页岩矿物组成TIMA定量分析结果
Table 1. Mineral compositions of Alum shale analyzed by TIMA
矿物名称 矿物质量百分含量(%) E-1 E-2 黏土 53.64 56.10 石英 21.35 17.81 正长石 10.11 10.25 有机质 9.79 10.64 黄铁矿 4.49 4.17 钠长石 0.54 0.32 白云母 0.05 0.07 未识别矿物 0.01 0.64 总计 100.0 100.0 表 2 欧洲中寒武系Alum页岩有机质与黄铁矿粒径分布参数
Table 2. Particles distribution parameters of organic matter and pyrite in Alum shale
样品编号 有机质 黄铁矿 粒径分布范围(μm) 主要粒径分布范围(μm)
及占比(%)粒径分布范围(μm) 主要粒径分布范围(μm)
及占比(%)小于5μm粒径占比(%) E-1 0.9~27.0 1.2~5.8(87.0) 1.2~17.0 1.7~7.0 (89.6) 76.38 E-2 0.9~27.0 1.2~5.5(86.9) 0.9~13.0 1.2~5.9 (91.0) 88.03 -
[1] Tissot B P, Welte D H.Petroleum formation and occurrence[M]. Berlin, Heidelberg, Newyork: Springer Verlag, 1978.
[2] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉儿吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
Zhu G Y, Chen F R, Chen Z Y, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tasim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
[3] 赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制——以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrain source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
[4] Xie X M, Li M W, Littke R, et al. Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2016, 165: 49-63. doi: 10.1016/j.coal.2016.07.004
[5] 朱光有, 杜德道, 陈玮岩, 等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm
Zhu G Y, Du D D, Chen W Y, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm
[6] 付小东, 邱楠生, 秦建中, 等. 四川盆地龙潭组烃源岩全硫含量特征及其对沉积环境的响应[J]. 石油与天然气地质, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm
Fu X D, Qiu N S, Qin J Z, et al. Total sulfur distribution of source rock of the Upper Permian Longtan Formation and its response to sedimentary environment in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm
[7] 刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰-龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm
Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm
[8] 孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm
Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm
[9] 谢小敏, 腾格尔, 秦建中, 等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm
Xie X M, Tenger, Qin J Z, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm
[10] 周泽, 亢韦, 熊孟辉, 等. 贵州凤冈地区牛蹄塘组页岩气储层特征及勘探前景[J]. 中国煤炭地质, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm
Zhou Z, Kang W, Xiong M H, et al. Niutitang Formation shale gas reservoir features and exploration prospect in Fenggang Area, Guizhou[J]. Coal Geology of China, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm
[11] Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region[J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
[12] Zhang Y, He Z, Jiang S, et al. Fracture types in the Lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291. doi: 10.1016/j.marpetgeo.2018.10.030
[13] Li M W, Chen Z H, Cao T T, et al. Expelled oil and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001
[14] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
[15] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成于富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
Guo T L, Zhang H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
[16] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
Wu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
[17] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
Jin Z J, Hu Z Q, Gao B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontier, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
[18] Yang F, Ning Z F, Wang Q, et al. Pore structure characteristics of Lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24. doi: 10.1016/j.coal.2015.12.015
[19] Xu Z, Shi W, Zhai G, et al. A rock physics model for characterizing the total porosity and velocity of shale: A case study in Fuling Area, China[J]. Marine and Petroleum Geology, 2019, 99: 208-226. doi: 10.1016/j.marpetgeo.2018.10.010
[20] Xie X M, Volkman J, Qin J Z, et al. Petrology and hydrocarbon potential of micro-algal and macroalgal dominated oil shales from the Eocene Huadian Formation, NE China[J]. International Journal of Coal Geology, 2014, 124(4): 36-47. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f2b8bf871306cdde79afc7ea1dc8c370
[21] Xie X M, Borjigin T, Zhang Q Z, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178. doi: 10.1016/j.coal.2015.05.011
[22] Xie X M, Amann-Hildenbrand A, Littke R, et al. The influence of partial hydrocarbon saturation on porosity and permeability in a Palaeogene lacustrine shale-hosted oil system of the Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2019, 207: 26-38. doi: 10.1016/j.coal.2019.03.010
[23] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
[24] 王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(4): 278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003
Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(4): 278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003
[25] 于亮, 朱亚林, 闫昭圣, 等. 环境扫描电镜在石油地质研究中的应用[J]. 电子显微学报, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm
Yu L, Zhu Y L, Yan Z S, et al. Application of field emission-environment scanning electron microscope in petroleum geology[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm
[26] 程涌, 刘聪, 吴伟, 等. 氩离子抛光-环境扫描电镜在页岩纳米孔隙研究中的应用——以辽中凹陷JX地区沙一段为例[J]. 电子显微学报, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm
Cheng Y, Liu C, Wu W, et al. The application of argon ion polishing-environmental scanning electron microscopy to the research on shale nanometer-sized pores[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm
[27] 秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm
Qin Y, Zhang W Z, Peng P A, et al. Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 Member of Yanchang Formation, Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm
[28] 遇昊, 陈代钊, 韦恒叶, 等. 二叠纪末期海洋缺氧: 来自黄铁矿形态的证据[J]. 地球科学, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm
Yu H, Chen D Z, Wei H Y, et al. Oceanic anoxia during the Late Permian: Evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm
[29] 遇昊, 陈代钊, 韦恒叶, 等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm
Yu H, Chen D Z, Wei H Y, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province[J]. Acta Petrologica Sinica, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm
[30] Breiter K, Ďurišová J, Hrstka T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cinovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292-293: 198-217. doi: 10.1016/j.lithos.2017.08.015
[31] Breiter K, Badanina E, Ďurišová J, et al. Chemistry of quartz-A new insight into the origin of the Orlovka Ta-Li deposit, eastern Transbaikalia, Russia[J]. Lithos, 2019, 348-359: 1-13. http://www.sciencedirect.com/science/article/pii/S0024493719303652
[32] Terfelt F. Upper Cambrian trilobite biostratigraphy and taphonomy at Kakeled on Kinnekulle, Västergötland, Sweden[J]. Acta Palaeontologica Polonica, 2003, 48(3): 409-416.
[33] Nielsen A T, Schovsbo N H. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia[J]. Bulletin of the Geological Society of Denmark, 2006, 53: 47-92. doi: 10.37570/bgsd-2006-53-04
[34] Pool W, Geluk M, Abels J, et al.Assessment of an unusual European shale gas play: The Cambro-Ordovician Alum shale, southern Sweden[C]//Proceedings of SPE/EAGE European Unconventional Resources Conference and Exhibition.Vienna: Society of Petroleum Engineers, 2012.
[35] Schovsbo N H. The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica[J]. Bulletin of the Geological Society of Denmark, 2003, 50: 11-27. http://www.researchgate.net/publication/279691947_The_geochemistry_of_Lower_Palaeozoic_sediments_deposited_on_the_margins_of_Baltica
[36] Kosakowski P, Kotarba M J, Piestrzynski A, et al. Petroleum source rock evaluation of the Alum and Dictyonema shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)[J]. International Journal of Earth Science (Geologische Rundschau), 2016, 106: 743-761. http://link.springer.com/10.1007/s00531-016-1328-x
[37] Yang S Y, Schulz H M, Horsfield B, et al. On the changing petroleum generation properties of Alum shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. doi: 10.1016/j.gca.2018.02.049
[38] Peters K E, Moldowan J M著. 姜乃煌译. 生物标记化合物指南[M]. 北京: 石油工业出版社, 1995.
Peters K E, Moldowan J M(Editor).Jiang N H(Translator).The giomarker guide[M].Beijing: Petroleum Industry Press, 1995.
[39] 肖贤明, 刘德汉, 傅家谟, 等. 海相镜质体——海相烃源岩中一种重要生烃母质[J]. 石油学报, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm
Xiao X M, Liu D H, Fu J M, et al. Marine vitrinite-An important hydrocarbon source matter in marine source rocks[J]. Acta Petrolei Sinica, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm
[40] 王飞宇, 何萍, 高岗, 等. 下古生界高过成熟烃源岩中的镜状体[J]. 中国石油大学学报(自然科学版), 1995, 19(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm
Wang F Y, He P, Gao G, et al. Vitrinite-like macerals in Chinese Early Palaeozoic source rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 1995, 19(Supplement 1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm
[41] 王飞宇, 陈敬轶, 高岗, 等. 源于宏观藻类的镜状体反射率——前泥盆纪海相地层成熟度标尺[J]. 石油勘探与开发, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
Wang F Y, Chen J Y, Gao G, et al. Reflectance of macroalgae-derived vitrinite-like macerals: An organic maturity indicator for Pre-Devonian marine strata[J]. Petroleum Exploration and Development, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
[42] Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. http://www.tandfonline.com/doi/abs/10.1080/11035890201242107
[43] Gautier D, Schovsbo N.Resource potential of the Alum shale in Denmark[C]//Proceedings of Unconventional Resources Technology Conference.2014: 2731-2740.
[44] Schovsbo N H, Nielsen A T, Gautier D L. The Lower Palaeozoic shale gas play in Denmark[J]. Geological Survey of Denmark and Greenland Bulletin, 2014, 31: 19-22.
[45] Peters K E, Walters C C, Moldowan J M. The biomarker guide, biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2005: 700.
[46] Morse J W, Berner R A. What determines sedimentary C/S ratios?[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1073-1077. doi: 10.1016/0016-7037(95)00024-T
[47] Huang Y J, Yang G S, Gu J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 152-161. doi: 10.1016/j.palaeo.2013.03.017
[48] Rickard D T. The origin of framboids[J]. Lithos, 1970, 3: 269-293. doi: 10.1016/0024-4937(70)90079-4
[49] Wilkin R T, Barnes H L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8
[50] Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148: 517-525. doi: 10.1016/S0012-821X(97)00053-8
[51] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61: 323-339. doi: 10.1016/S0016-7037(96)00320-1
[52] 韦恒叶. 鄂西-湘西北二叠系栖霞组黑色岩系有机质富集机理[D]. 北京: 中国科学院地质与地球物理研究所, 2011.
Wei Y H.Accumulation mechanism of organic matter in black rock series of the Qixia Formation of Permian in western Hubei and northwestern Hunan[D].Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011.
[53] Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. http://www.tandfonline.com/doi/abs/10.1080/11035890201242107