中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征

谢小敏, 李利, 袁秋云, 吴芬婷, 林静文, 豆浩然. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50-60. doi: 10.15898/j.cnki.11-2131/td.202007120103
引用本文: 谢小敏, 李利, 袁秋云, 吴芬婷, 林静文, 豆浩然. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50-60. doi: 10.15898/j.cnki.11-2131/td.202007120103
XIE Xiao-min, LI Li, YUAN Qiu-yun, WU Fen-ting, LIN Jing-wen, DOU Hao-ran. Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60. doi: 10.15898/j.cnki.11-2131/td.202007120103
Citation: XIE Xiao-min, LI Li, YUAN Qiu-yun, WU Fen-ting, LIN Jing-wen, DOU Hao-ran. Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60. doi: 10.15898/j.cnki.11-2131/td.202007120103

应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征

  • 基金项目:
    国家自然科学基金面上基金项目(41972163)
详细信息
    作者简介: 谢小敏, 博士, 教授, 主要研究方向为有机岩石学、地球化学与石油地质学。E-mail: xiaominxie2019@sina.com
  • 中图分类号: P619.227;P578.292

Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance

  • Alum页岩(中寒武—早奥陶世)是北欧一套重要的海相烃源岩,其成熟度跨度从为成熟-过成熟度阶段。由于我国下古生界海相烃源岩均已过成熟,未成熟-低成熟度的Alum页岩是研究下古海相的烃源岩生烃潜力特征的重要参照样品。因此,对这套成熟度较低的Alum页岩的生物组成特征、矿物组成及其沉积环境的分析,可为后续国内外下古生界海相烃源岩的对比研究奠定基础。本文以欧洲上寒武统富含有机质Alum页岩为主要研究对象,在有机碳含量(TOC)和有机岩石学观察的基础上,应用综合矿物分析技术(TIMA)进行扫描,通过细化样品扫描参数,获得了页岩矿物组成、含量及粒度分布。Alum页岩有机质成熟度较低(固体沥青反射率为0.30),TOC含量在11.16%~12.24%之间。有机质主要为浮游藻类降解形成的层状藻类体、底栖藻类来源的海相镜状体和裂缝中充填的固体沥青。TIMA扫描获得的有机质相对质量百分含量为9.79%~10.64%,略低于碳硫分析仪测定的TOC含量;黄铁矿含量为4.17%~4.49%。TIMA扫描获得的有机质与黄铁矿比值与化学法的C/S比值相近,均分布在2.18~2.55范围。粒径分布特征上,有机质粒径主要分布在0.9~27.0μm之间(80%以上颗粒分布在1.2~5.5μm);草莓状黄铁矿粒径分布在0.9~17.0μm之间(小于0.5μm的颗粒占78%以上),反映了缺氧甚至硫化的环境。综合C/S比、有机岩石学与TIMA黄铁矿粒度分布特征,认为该页岩形成于闭塞封闭甚至硫化的沉积水体体系。该研究为油气地质领域的烃源岩(包括页岩)的研究提供了一种新的技术支持。

  • 加载中
  • 图 1  欧洲中寒武系Alum页岩显微与超显微岩石学照片: a~f为显微镜下照片: a、c为反射白光下显微照片; b、d为反射荧光下显微照片; e、f为透射光下显微照片,×500,油浸; g~j为扫描电镜下二次电子照片

    Figure 1. 

    图 2  欧洲中寒武系Alum页岩样品E-1的TIMA扫描电镜照片及粒度分布图

    Figure 2. 

    图 3  欧洲中寒武系Alum页岩样品E-2的TIMA扫描电镜照片及粒度分布图

    Figure 3. 

    表 1  欧洲中寒武系Alum页岩矿物组成TIMA定量分析结果

    Table 1.  Mineral compositions of Alum shale analyzed by TIMA

    矿物名称 矿物质量百分含量(%)
    E-1 E-2
    黏土 53.64 56.10
    石英 21.35 17.81
    正长石 10.11 10.25
    有机质 9.79 10.64
    黄铁矿 4.49 4.17
    钠长石 0.54 0.32
    白云母 0.05 0.07
    未识别矿物 0.01 0.64
    总计 100.0 100.0
    下载: 导出CSV

    表 2  欧洲中寒武系Alum页岩有机质与黄铁矿粒径分布参数

    Table 2.  Particles distribution parameters of organic matter and pyrite in Alum shale

    样品编号 有机质 黄铁矿
    粒径分布范围(μm) 主要粒径分布范围(μm)
    及占比(%)
    粒径分布范围(μm) 主要粒径分布范围(μm)
    及占比(%)
    小于5μm粒径占比(%)
    E-1 0.9~27.0 1.2~5.8(87.0) 1.2~17.0 1.7~7.0 (89.6) 76.38
    E-2 0.9~27.0 1.2~5.5(86.9) 0.9~13.0 1.2~5.9 (91.0) 88.03
    下载: 导出CSV
  • [1]

    Tissot B P, Welte D H.Petroleum formation and occurrence[M]. Berlin, Heidelberg, Newyork: Springer Verlag, 1978.

    [2]

    朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉儿吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm

    Zhu G Y, Chen F R, Chen Z Y, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tasim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm

    [3]

    赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制——以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm

    Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrain source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm

    [4]

    Xie X M, Li M W, Littke R, et al. Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2016, 165: 49-63. doi: 10.1016/j.coal.2016.07.004

    [5]

    朱光有, 杜德道, 陈玮岩, 等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm

    Zhu G Y, Du D D, Chen W Y, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm

    [6]

    付小东, 邱楠生, 秦建中, 等. 四川盆地龙潭组烃源岩全硫含量特征及其对沉积环境的响应[J]. 石油与天然气地质, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm

    Fu X D, Qiu N S, Qin J Z, et al. Total sulfur distribution of source rock of the Upper Permian Longtan Formation and its response to sedimentary environment in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm

    [7]

    刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰-龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm

    Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm

    [8]

    孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm

    Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm

    [9]

    谢小敏, 腾格尔, 秦建中, 等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm

    Xie X M, Tenger, Qin J Z, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm

    [10]

    周泽, 亢韦, 熊孟辉, 等. 贵州凤冈地区牛蹄塘组页岩气储层特征及勘探前景[J]. 中国煤炭地质, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm

    Zhou Z, Kang W, Xiong M H, et al. Niutitang Formation shale gas reservoir features and exploration prospect in Fenggang Area, Guizhou[J]. Coal Geology of China, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm

    [11]

    Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region[J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044

    [12]

    Zhang Y, He Z, Jiang S, et al. Fracture types in the Lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291. doi: 10.1016/j.marpetgeo.2018.10.030

    [13]

    Li M W, Chen Z H, Cao T T, et al. Expelled oil and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001

    [14]

    邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    [15]

    郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成于富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    Guo T L, Zhang H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    [16]

    吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    Wu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    [17]

    金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm

    Jin Z J, Hu Z Q, Gao B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontier, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm

    [18]

    Yang F, Ning Z F, Wang Q, et al. Pore structure characteristics of Lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24. doi: 10.1016/j.coal.2015.12.015

    [19]

    Xu Z, Shi W, Zhai G, et al. A rock physics model for characterizing the total porosity and velocity of shale: A case study in Fuling Area, China[J]. Marine and Petroleum Geology, 2019, 99: 208-226. doi: 10.1016/j.marpetgeo.2018.10.010

    [20]

    Xie X M, Volkman J, Qin J Z, et al. Petrology and hydrocarbon potential of micro-algal and macroalgal dominated oil shales from the Eocene Huadian Formation, NE China[J]. International Journal of Coal Geology, 2014, 124(4): 36-47. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f2b8bf871306cdde79afc7ea1dc8c370

    [21]

    Xie X M, Borjigin T, Zhang Q Z, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178. doi: 10.1016/j.coal.2015.05.011

    [22]

    Xie X M, Amann-Hildenbrand A, Littke R, et al. The influence of partial hydrocarbon saturation on porosity and permeability in a Palaeogene lacustrine shale-hosted oil system of the Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2019, 207: 26-38. doi: 10.1016/j.coal.2019.03.010

    [23]

    邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    [24]

    王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(4): 278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003

    Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(4): 278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003

    [25]

    于亮, 朱亚林, 闫昭圣, 等. 环境扫描电镜在石油地质研究中的应用[J]. 电子显微学报, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm

    Yu L, Zhu Y L, Yan Z S, et al. Application of field emission-environment scanning electron microscope in petroleum geology[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm

    [26]

    程涌, 刘聪, 吴伟, 等. 氩离子抛光-环境扫描电镜在页岩纳米孔隙研究中的应用——以辽中凹陷JX地区沙一段为例[J]. 电子显微学报, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm

    Cheng Y, Liu C, Wu W, et al. The application of argon ion polishing-environmental scanning electron microscopy to the research on shale nanometer-sized pores[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm

    [27]

    秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm

    Qin Y, Zhang W Z, Peng P A, et al. Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 Member of Yanchang Formation, Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm

    [28]

    遇昊, 陈代钊, 韦恒叶, 等. 二叠纪末期海洋缺氧: 来自黄铁矿形态的证据[J]. 地球科学, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm

    Yu H, Chen D Z, Wei H Y, et al. Oceanic anoxia during the Late Permian: Evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm

    [29]

    遇昊, 陈代钊, 韦恒叶, 等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm

    Yu H, Chen D Z, Wei H Y, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province[J]. Acta Petrologica Sinica, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm

    [30]

    Breiter K, Ďurišová J, Hrstka T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cinovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292-293: 198-217. doi: 10.1016/j.lithos.2017.08.015

    [31]

    Breiter K, Badanina E, Ďurišová J, et al. Chemistry of quartz-A new insight into the origin of the Orlovka Ta-Li deposit, eastern Transbaikalia, Russia[J]. Lithos, 2019, 348-359: 1-13. http://www.sciencedirect.com/science/article/pii/S0024493719303652

    [32]

    Terfelt F. Upper Cambrian trilobite biostratigraphy and taphonomy at Kakeled on Kinnekulle, Västergötland, Sweden[J]. Acta Palaeontologica Polonica, 2003, 48(3): 409-416.

    [33]

    Nielsen A T, Schovsbo N H. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia[J]. Bulletin of the Geological Society of Denmark, 2006, 53: 47-92. doi: 10.37570/bgsd-2006-53-04

    [34]

    Pool W, Geluk M, Abels J, et al.Assessment of an unusual European shale gas play: The Cambro-Ordovician Alum shale, southern Sweden[C]//Proceedings of SPE/EAGE European Unconventional Resources Conference and Exhibition.Vienna: Society of Petroleum Engineers, 2012.

    [35]

    Schovsbo N H. The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica[J]. Bulletin of the Geological Society of Denmark, 2003, 50: 11-27. http://www.researchgate.net/publication/279691947_The_geochemistry_of_Lower_Palaeozoic_sediments_deposited_on_the_margins_of_Baltica

    [36]

    Kosakowski P, Kotarba M J, Piestrzynski A, et al. Petroleum source rock evaluation of the Alum and Dictyonema shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)[J]. International Journal of Earth Science (Geologische Rundschau), 2016, 106: 743-761. http://link.springer.com/10.1007/s00531-016-1328-x

    [37]

    Yang S Y, Schulz H M, Horsfield B, et al. On the changing petroleum generation properties of Alum shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. doi: 10.1016/j.gca.2018.02.049

    [38]

    Peters K E, Moldowan J M著. 姜乃煌译. 生物标记化合物指南[M]. 北京: 石油工业出版社, 1995.

    Peters K E, Moldowan J M(Editor).Jiang N H(Translator).The giomarker guide[M].Beijing: Petroleum Industry Press, 1995.

    [39]

    肖贤明, 刘德汉, 傅家谟, 等. 海相镜质体——海相烃源岩中一种重要生烃母质[J]. 石油学报, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm

    Xiao X M, Liu D H, Fu J M, et al. Marine vitrinite-An important hydrocarbon source matter in marine source rocks[J]. Acta Petrolei Sinica, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm

    [40]

    王飞宇, 何萍, 高岗, 等. 下古生界高过成熟烃源岩中的镜状体[J]. 中国石油大学学报(自然科学版), 1995, 19(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm

    Wang F Y, He P, Gao G, et al. Vitrinite-like macerals in Chinese Early Palaeozoic source rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 1995, 19(Supplement 1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm

    [41]

    王飞宇, 陈敬轶, 高岗, 等. 源于宏观藻类的镜状体反射率——前泥盆纪海相地层成熟度标尺[J]. 石油勘探与开发, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm

    Wang F Y, Chen J Y, Gao G, et al. Reflectance of macroalgae-derived vitrinite-like macerals: An organic maturity indicator for Pre-Devonian marine strata[J]. Petroleum Exploration and Development, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm

    [42]

    Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. http://www.tandfonline.com/doi/abs/10.1080/11035890201242107

    [43]

    Gautier D, Schovsbo N.Resource potential of the Alum shale in Denmark[C]//Proceedings of Unconventional Resources Technology Conference.2014: 2731-2740.

    [44]

    Schovsbo N H, Nielsen A T, Gautier D L. The Lower Palaeozoic shale gas play in Denmark[J]. Geological Survey of Denmark and Greenland Bulletin, 2014, 31: 19-22.

    [45]

    Peters K E, Walters C C, Moldowan J M. The biomarker guide, biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2005: 700.

    [46]

    Morse J W, Berner R A. What determines sedimentary C/S ratios?[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1073-1077. doi: 10.1016/0016-7037(95)00024-T

    [47]

    Huang Y J, Yang G S, Gu J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 152-161. doi: 10.1016/j.palaeo.2013.03.017

    [48]

    Rickard D T. The origin of framboids[J]. Lithos, 1970, 3: 269-293. doi: 10.1016/0024-4937(70)90079-4

    [49]

    Wilkin R T, Barnes H L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8

    [50]

    Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148: 517-525. doi: 10.1016/S0012-821X(97)00053-8

    [51]

    Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61: 323-339. doi: 10.1016/S0016-7037(96)00320-1

    [52]

    韦恒叶. 鄂西-湘西北二叠系栖霞组黑色岩系有机质富集机理[D]. 北京: 中国科学院地质与地球物理研究所, 2011.

    Wei Y H.Accumulation mechanism of organic matter in black rock series of the Qixia Formation of Permian in western Hubei and northwestern Hunan[D].Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011.

    [53]

    Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. http://www.tandfonline.com/doi/abs/10.1080/11035890201242107

  • 加载中

(3)

(2)

计量
  • 文章访问数:  2269
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2020-07-12
修回日期:  2020-08-03
录用日期:  2020-09-19
刊出日期:  2021-01-28

目录