中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤界限含水率标准物质研制

赵秀峰, 高孝礼, 曹磊, 曹景洋, 路新成. 土壤界限含水率标准物质研制[J]. 岩矿测试, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119
引用本文: 赵秀峰, 高孝礼, 曹磊, 曹景洋, 路新成. 土壤界限含水率标准物质研制[J]. 岩矿测试, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119
ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, CAO Jing-yang, LU Xin-cheng. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119
Citation: ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, CAO Jing-yang, LU Xin-cheng. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119

土壤界限含水率标准物质研制

  • 基金项目:
    中国地质调查局地质调查项目"土壤界限含水率等标准物质研制及DT-92《土工试验规程》修订"(DD20160095-15);国家重点研发计划项目"典型矿产标准物质研制"课题(2016YFF0201103)
详细信息
    作者简介: 赵秀峰, 硕士, 高级工程师, 从事岩土和非金属矿物化性能测试及研究工作。E-mail: zhaoxiufeng-zxf@163.com
  • 中图分类号: TQ421.31

Preparation of Certified Reference Materials for Soil Limit Water Content

  • 界限含水率是细粒土定名分类、评价土的工程性质的重要依据,也是黏土矿勘查和工业利用的重要评价指标。不准确的界限含水率测试结果将可能导致严重的工程安全事故,造成人身和经济财产损失。标准物质是保障分析数据准确、可比和有效的重要手段,但当前国内外尚无土壤界限含水率标准物质,可见研制土壤界限含水率标准物质具有重要的现实意义。基于以上原因,本文严格按照《一级标准物质技术规范》(JJF 1006-1994)和《标准物质定值的通用原则及统计学原理》(JJF 1343-2012)等规范和标准,研制了5个土壤界限含水率标准物质(GBW07969、GBW07970、GBW07971、GBW07972、GBW07973)。候选物样品分别采自安徽淮北、山西大同及江苏南京等地,经人工粗碎、烘干、灭菌等加工处理后,采用大型球磨机将候选物样品细碎至粒径小于0.25mm。混匀、分装后每个候选物随机抽取25瓶进行均匀性检验,F实测值均小于临界值F0.05(24,25)=1.96,相对标准偏差(RSD)介于1.16%~2.67%之间,表明均匀性良好。12个月的考察期内进行的5次长期稳定性检验和考虑两种极端环境温度(60℃、-20℃)的短期稳定性检验,均未发现统计学意义的明显变化,候选物样品稳定性良好。经9家实验室采用2种经典土壤界限含水率测试方法联合定值,10mm液限、塑限和塑性指数3个定值指标的标准值分别介于26.3%~39.9%、16.3%~22.2%、10.0%~17.7%之间,梯度系列显著,涵盖了粉质黏土和黏土两种黏性土类别。该系列标准物质可用于仪器设备校准、质量监控、能力验证等技术质量活动,为水工环地质勘查、岩土工程勘察、黏土矿勘查等工作对土壤界限含水率测试数据准确性的要求提供了保障。

  • 加载中
  • 图 1  候选物样品制备流程

    Figure 1. 

    表 1  候选物的土质类别、界限含水率指标范围和矿物组成

    Table 1.  Soil classification, the range of limit water content indexes and mineral compositions of candidates

    候选物编号
    Codes
    土质分类
    Soil classification
    界限含水率指标范围
    The range of limit water content indexes
    矿物组成Mineral
    compositions
    10mm液限(%)
    10mm liquid limit (%)
    塑限(%)
    Plastic limit (%)
    塑性指数
    Plasticity index
    LWC-1 粉土~粉质黏土Silt-Silty clay 25.5~27.5 15.5~17.5 9.0~12.0 石英(55%~60%),长石(10%),水云母(10%),方解石(5%~10%),绿泥石(10%),少量沸石Quartz(55%-60%),Feldspar(10%),Hydromica(10%),Calcite(5%-10%),Chlorite(10%),Small amount of zeolite
    LWC-2 粉质黏土Silty clay 28.0~33.0 15.0~19.0 12.0~15.0 石英(55%~60%),长石(15%~20%),水云母(10%-15%),方解石(5%),绿泥石(5%) Quartz(55%-60%),Feldspar(15%-20%),Hydromica(10%-15%),Calcite(5%),Chlorite(5%)
    LWC-3 粉质黏土Silty clay 32.0~35.0 17.0~20.0 13.0~16.0 石英(45%~50%),长石(10%),水云母(10%~15%),蒙脱石(25%~30%),少量蛭石Quartz (45%-50%),Feldspar (10%),Hydromica (10%-15%),Montmorillonite(25%-30%),Small amount of vermiculite
    LWC-4 粉质黏土Silty clay 35.0~38.0 19.0~23.0 14.5~17.0 石英(65%~70%),长石(10%),蒙脱石(10%~15%),水云母(5%) Quartz(65%-70%),Feldspar(10%),Montmorillonite(10%-15%),Hydromica(5%)
    LWC-5 黏土Clay 39.0~43.0 20.0~24.0 16.0~19.0 石英(70%~75%),长石(10%),伊利水云母(5%~10%),少量蛭石、云母Quartz(70%-75%),Feldspar(10%),Illite hydromica (5%-10%),Small amount of vermiculite and mica
    下载: 导出CSV

    表 2  候选物均匀性检验结果

    Table 2.  Analytical results of the homogeneity tests

    候选物编号
    Codes
    检验指标
    Test items
    平均值(%)
    Average(%)
    RSD
    (%)
    F实测值
    Fmeasured
    ubb
    LWC-1 10mm液限
    10mm liquid limit
    26.4 1.22 1.54 0.15
    塑限
    Plastic limit
    16.3 2.67 1.74 0.23
    LWC-2 10mm液限10mm liquid limit 31.6 1.16 1.47 0.17
    塑限Plastic limit 18.0 2.42 1.36 0.18
    LWC-3 10mm液限10mm liquid limit 33.4 1.38 1.58 0.22
    塑限Plastic limit 18.7 2.43 1.65 0.23
    LWC-4 10mm液限10mm liquid limit 37.1 1.45 1.41 0.23
    塑限Plastic limit 21.2 2.46 1.57 0.25
    LWC-5 10mm液限10mm liquid limit 39.9 1.26 1.55 0.24
    塑限Plastic limit 22.3 2.66 1.47 0.26
    下载: 导出CSV

    表 3  长期稳定性检验结果

    Table 3.  Analytical results of the long-term stability tests

    候选物编号
    Codes
    检验指标
    Test items
    平均值(%)
    Average (%)
    标准偏差(%)
    Standard deviation(%)
    β1 s(β1) t0.05·s(β1) us长
    usLong-term
    LWC-1 10mm液限
    10mm liquid limit
    26.4 0.13 0.010 0.014 0.043 0.17
    塑限
    Plastic limit
    16.3 0.13 -0.005 0.015 0.049 0.19
    LWC-2 10mm液限
    10mm liquid limit
    31.4 0.14 0.01 0.016 0.051 0.20
    塑限
    Plastic limit
    17.6 0.14 -0.014 0.015 0.048 0.19
    LWC-3 10mm液限
    10mm liquid limit
    33.3 0.14 0.003 0.017 0.054 0.21
    塑限
    Plastic limit
    18.8 0.15 0.005 0.018 0.057 0.22
    LWC-4 10mm液限
    10mm liquid limit
    37.1 0.16 -0.008 0.019 0.059 0.23
    塑限
    Plastic limit
    21.0 0.17 0.003 0.02 0.064 0.25
    LWC-5 10mm液限
    10mm liquid limit
    39.9 0.18 -0.021 0.017 0.054 0.21
    塑限
    Plastic limit
    22.3 0.19 0.013 0.021 0.067 0.26
    下载: 导出CSV

    表 4  60℃和-20℃下短期稳定性检验结果

    Table 4.  Analytical results of the short-term stability tests at 60℃ and -20℃

    60℃短期稳定性检验Short-term stability tests at 60℃
    候选物编号
    Codes
    检验指标
    Test items
    平均值(%)
    Average (%)
    标准偏差(%)
    Standard deviation(%)
    β1 s(β1) t0.05·s(β1) us短
    usShort-term
    LWC-1 10mm液限
    10mm liquid limit
    26.3 0.05 -0.002 0.007 0.094 0.11
    塑限
    Plastic limit
    16.3 0.05 0.003 0.006 0.081 0.09
    LWC-2 10mm液限
    10mm liquid limit
    31.7 0.06 0.001 0.009 0.113 0.13
    塑限
    Plastic limit
    17.9 0.07 0 0.010 0.131 0.15
    LWC-3 10mm液限
    10mm liquid limit
    33.3 0.08 0.001 0.012 0.149 0.17
    塑限
    Plastic limit
    18.6 0.10 0.006 0.012 0.157 0.18
    LWC-4 10mm液限
    10mm liquid limit
    37.1 0.06 -0.003 0.009 0.110 0.13
    塑限
    Plastic limit
    21.0 0.10 -0.001 0.014 0.176 0.20
    LWC-5 10mm液限
    10mm liquid limit
    40.1 0.07 0.002 0.010 0.128 0.15
    塑限
    Plastic limit
    22.7 0.08 -0.003 0.012 0.149 0.17
    -20℃短期稳定性检验Short-term stability tests at -20℃
    候选物编号
    Codes
    检验指标
    Test items
    平均值(%)
    Average (%)
    标准偏差(%)
    Standard deviation(%)
    β1 s(β1) t0.05·s(β1) us短
    usShort-term
    LWC-1 10mm液限
    10mm liquid limit
    26.3 0.06 0 0.009 0.113 0.13
    塑限
    Plastic limit
    16.3 0.07 0.002 0.010 0.131 0.15
    LWC-2 10mm液限
    10mm liquid limit
    31.7 0.07 0.002 0.010 0.121 0.14
    塑限
    Plastic limit
    17.9 0.12 -0.001 0.017 0.210 0.24
    LWC-3 10mm液限
    10mm liquid limit
    33.3 0.06 -0.005 0.008 0.097 0.11
    塑限
    Plastic limit
    18.6 0.06 -0.001 0.009 0.110 0.13
    LWC-4 10mm液限
    10mm liquid limit
    37.0 0.12 -0.011 0.013 0.162 0.18
    塑限
    Plastic limit
    20.9 0.16 -0.020 0.011 0.139 0.16
    LWC-5 10mm液限
    10mm liquid limit
    40.1 0.08 0.001 0.011 0.141 0.16
    塑限
    Plastic limit
    22.5 0.12 -0.001 0.018 0.223 0.25
    下载: 导出CSV

    表 5  实验室考核数据统计

    Table 5.  Analytical results of laboratory assessment data

    实验室代码
    Lab code
    考核指标
    Assessment items
    平均值(%)
    Average(%)
    标准偏差(%)
    Standard deviation (%)
    A 10mm液限
    10mm liquid limit
    30.8 0.06
    塑限
    Plastic limit
    17.8 0.40
    B 10mm液限
    10mm liquid limit
    32.0 0.14
    塑限
    Plastic limit
    18.4 0.40
    C 10mm液限
    10mm liquid limit
    30.8 0.16
    塑限
    Plastic limit
    17.2 0.22
    D 10mm液限
    10mm liquid limit
    31.4 0.40
    塑限
    Plastic limit
    18.3 0.35
    E 10mm液限
    10mm liquid limit
    31.5 0.37
    塑限
    Plastic limit
    17.6 0.30
    F 10mm液限
    10mm liquid limit
    31.9 0.38
    塑限
    Plastic limit
    17.7 0.50
    G 10mm液限
    10mm liquid limit
    31.4 0.38
    塑限
    Plastic limit
    17.4 0.32
    H 10mm液限
    10mm liquid limit
    32.1 0.16
    塑限
    Plastic limit
    17.9 0.21
    I 10mm液限
    10mm liquid limit
    31.7 0.19
    塑限
    Plastic limit
    17.9 0.14
    下载: 导出CSV

    表 6  标准值与扩展不确定度

    Table 6.  Certified values and expanded uncertainties

    定值指标
    Certified items
    单位
    Units
    LWC-1 LWC-2 LWC-3 LWC-4 LWC-5
    标准值
    Certified values
    不确定度
    Uncertainties
    标准值
    Certified values
    不确定度
    Uncertainties
    标准值
    Certified values
    不确定度
    Uncertainties
    标准值
    Certified values
    不确定度
    Uncertainties
    标准值
    Certified values
    不确定度
    Uncertainties
    10mm液限
    10mm liquid limit
    % 26.3 0.7 31.5 0.8 33.3 0.9 37.0 0.9 39.9 0.9
    塑限
    Plastic limit
    % 16.3 0.8 17.8 0.9 18.5 0.9 21.0 1.0 22.2 1.1
    塑性指数
    Plasticity index
    / 10.0 1.0 13.7 1.1 14.8 1.2 16.0 1.3 17.7 1.3
    下载: 导出CSV
  • [1]

    赵欢, 毕升. 土力学与地基基础[M]. 北京: 北京理工大学出版社, 2018.

    Zhao H, Bi S. Soil mechanics and foundation[M]. Beijing: Beijing Institute of Technology Press, 2018.

    [2]

    邓志飞, 刘吉夫, 郭兰兰, 等. 粘土矿物组成对土体液化特性的影响研究进展[J]. 灾害学, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

    Deng Z F, Liu J F, Guo L L, et al. Research process on the influence of clay mineral composition on soil liquefaction characteristics[J]. Journal of Catastrophology, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

    [3]

    袁士才, 田宗坤, 张开发, 等. 掺和料对改良土液塑限影响试验研究[J]. 低温建筑技术, 2017, 39(1): 84-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201701032.htm

    Yuan S C, Tian Z K, Zhang K F, et al. Research on effect of admixture on liquid limit and plastic limit of improved soil[J]. Low Temperature Architecture Technology, 2017, 39(1): 84-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201701032.htm

    [4]

    毕庆涛, 曹世超, 吴琦, 等. 渤海近海口软黏土液塑限试验研究[J]. 人民黄河, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

    Bi Q T, Cao S C, Wu Q, et al. Experimental study on liquid-plastic limit of soft clay in Bohai seaport[J]. Yellow River, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

    [5]

    朱慧鑫, 邓羽松, 夏振刚, 等. 鄂东南花岗岩崩岗剖面土壤液塑限特征及影响因子分析[J]. 中国水土保持科学, 2016, 14(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201605001.htm

    Zhu H X, Deng Y S, Xia Z G, et al. Liquid and plastic limits and influencing factors for the profiles of collapse slope in southeast of Hubei Province[J]. Science of Water and Soil Conservation, 2016, 14(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201605001.htm

    [6]

    董均贵, 季春生. 粒径对液塑限的影响及影响机理研究[J]. 工程建设, 2017, 49(3): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YJKS201703003.htm

    Dong J G, Ji C S. Discussion on influence of particle size on liquid and plastic limit and its influence mechanism[J]. Engineering Construction, 2017, 49(3): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YJKS201703003.htm

    [7]

    陈菊腾, 刘建文. 细粒土的塑性指数与黏粒含量的关系分析[J]. 工程建设与设计, 2020(16): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS202016027.htm

    Chen J T, Liu J W. Relationship analysis between plasticity index and clay content of fine grained soil[J]. Construction & Design for Project, 2020(16): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS202016027.htm

    [8]

    蒋玉, 饶真勇, 罗德兵. 不同限定粒径下土体液塑限指标分析[J]. 山西建筑, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

    Jiang Y, Rao Z Y, Luo D B. Analysis of soil body fluid plastic limit index under different limited particle size[J]. Shanxi Achitecture, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

    [9]

    Adunoye G O, Badmus A B, Sagbele S A. Experimental investigation of the influence of gradation parameters on Atterberg limits of soil[J]. Archives of Current Research International, 2018, 15(4): 1-6. doi: 10.9734/ACRI/2018/45840

    [10]

    董金玉, 赵亚文. 不同含水率下高低液塑限红黏土抗剪强度特性研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

    Dong J Y, Zhao Y W. Study on shear strength of high and low liquid plastic limit red clay with different water contents[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

    [11]

    罗爽, 高华端, 陶倩, 等. 黔中地区坡耕地土壤机械组成对界限含水量的影响[J]. 土壤通报, 2020, 51(3): 580-586. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003011.htm

    Luo S, Gao H D, Tao Q, et al. Influence of soil mechanical composition on the atterberg limits in the slope farmland of central Guizhou[J]. Chinese Journal of Soil Science, 2020, 51(3): 580-586. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003011.htm

    [12]

    于泽溪, 李育超, 陈冠年. 钠质膨润土渗透性与膨胀性及可塑性的相关性[J]. 哈尔滨工业大学学报, 2020, 52(11): 97-106. doi: 10.11918/201907039

    Yu Z X, Li Y C, Chen G N. Correlation between permeability, swelling, and plasticity of sodium bentonite[J]. Journal of Harbin Institute of Technology, 2020, 52(11): 97-106. doi: 10.11918/201907039

    [13]

    李善梅, 刘之葵, 蒙剑坪. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

    Li S M, Liu Z K, Meng J P. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

    [14]

    周凤玺, 张海威, 张家齐. 基于粒间毛细作用探讨界限含水量[J]. 兰州理工大学学报, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

    Zhou F X, Zhang H W, Zhang J Q. Probe into liquid and plastic limits of fine-grained soils with intergranular capillary[J]. Journal of Lanzhou University of Technology, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

    [15]

    刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm

    Liu P F, Wang S Y, Yang J S, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm

    [16]

    Zhou B C, Lu N. Correlation between Atterberg limits and soil adsorptive water[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020162. doi: 10.1061/(ASCE)GT.1943-5606.0002463

    [17]

    Widjaja B, Nirwanto A F. Effect of various temperatures to liquid limit, plastic limit, and plasticity index of clays[J]. IOP Conference Series: Materials Science and Engineering, 2019, 508(1): 012099. doi: 10.1088/1757-899X/508/1/012099/pdf

    [18]

    Arthur E, Rehman H U, Tuller M, et al. Estimating Atterberg limits of soils from hygroscopic water content[J]. Geoderma, 2021, 381: 114698. doi: 10.1016/j.geoderma.2020.114698

    [19]

    Zhao M Z, Luo Q, Wei M, et al. Evaluation for intrinsic compressibility of reconstituted clay using liquid limit, initial water content and plasticity index[J]. European Journal of Environmental and Civil Engineering, 2019, 23(11): 1332-1350. doi: 10.1080/19648189.2017.1347069

    [20]

    Vardanega P J, Hickey C L, Lau K, et al. Investigation of the Atterberg limits and undrained fall-cone shear strength variation with water content of some peat soils[J]. International Journal of Pavement Research and Technology, 2019, 12(2): 131-138. doi: 10.1007/s42947-019-0017-0

    [21]

    Spagnoli G, Feinendegen M. Relationship between measured plastic limit and plastic limit estimated from undrained shear strength, water content ratio and liquidity index[J]. Clay Minerals, 2017, 52(4): 509-519. doi: 10.1180/claymin.2017.052.4.08

    [22]

    《工程地质手册》编委会. 工程地质手册(第5版)[M]. 北京: 中国建筑工业出版社, 2018.

    Editing committee of 《Handbook of Engineering Geology》. Handbook of engineering geology (The fifth edition)[M]. Beijing: China Architecture Press, 2018.

    [23]

    史福刚, 张佳宝, 姚健. 砂姜黑土界限含水率及适耕性研究[J]. 河南农业科学, 2017, 46(12): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201712012.htm

    Shi F G, Zhang J B, Yao J. Atterberg limits and tillability of different types of lime concretion black soil[J]. Journal of Henan Agricultural Sciences, 2017, 46(12): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201712012.htm

    [24]

    《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2014.

    Editorial committee of 《Handbook on Industrial Requirements for Mineral Resources》. Handbook on industrial requirements for mineral resources[M]. Beijing: Geological Publishing House, 2014.

    [25]

    苗立锋, 包镇红, 宋福生, 等. 几种高岭土的组成与可塑性研究[J]. 硅酸盐通报, 2014, 33(2): 333-336. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402025.htm

    Miao L F, Bao Z H, Song F S, et al. Study on the composition and plasticity of several kaolin[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2): 333-336. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402025.htm

    [26]

    张艾丽, 冯荣, 成龙胜. 振捣法提高硬质高岭土可塑性的研究[J]. 硅酸盐通报, 2019, 38(3): 884-888. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903051.htm

    Zhang A L, Feng R, Cheng L S. Study on improving plasticity of hard kaolin by vibrating tamping[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 884-888. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903051.htm

    [27]

    Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. http://onlinelibrary.wiley.com/doi/full/10.1111/ggr.12152

    [28]

    Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. http://onlinelibrary.wiley.com/doi/ftr/10.1111/j.1751-908X.2015.00392.x

    [29]

    王毅民, 王晓红, 高玉淑. 地质标准物质粒度测量与表征的现代方法[J]. 地质通报, 2009, 28(1): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901018.htm

    Wang Y M, Wang X H, Gao Y S. Modern methods for the measurement and characterization of particle size in geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(1): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901018.htm

    [30]

    王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804-807. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906015.htm

    Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804-807. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906015.htm

    [31]

    李庆庆, 刘冰, 周伟兵. 中美英规范界限含水率试验差异及数据对比[J]. 水运工程, 2020(5): 224-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202005047.htm

    Li Q Q, Liu B, Zhou W B. Difference and data comparative of limit moisture content test in Chinese, American and British codes[J]. Port & Waterway Engineering, 2020(5): 224-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202005047.htm

    [32]

    Sharma B, Sridharan A. Liquid and plastic limits of clays by cone method[J]. International Journal of Geo-Engineering, 2018, 9(1): 22. doi: 10.1186/s40703-018-0092-0

    [33]

    张宗堂, 高文华, 黄建平, 等. 基于液塑限联合测定法的界限含水量确定方法研究[J]. 湖南科技大学学报(自然科学版), 2016, 31(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201603010.htm

    Zhang Z T, Gao W H, Huang J P, et al. Study on determination method of critical moisture content based on liquid-plastic limit combined measurement[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2016, 31(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201603010.htm

    [34]

    彭慈德, 常留成. 数学解析法在界限含水率试验中的判别式研究[J]. 路基工程, 2018(1): 16-19, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201801004.htm

    Peng C D, Chang L C. Discriminant study of mathematical analytic method in boundary moisture content test[J]. Subgrade Engineering, 2018(1): 16-19, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201801004.htm

    [35]

    陈孟元. 土壤界限含水率自动检测系统设计研究[J]. 工程设计学报, 2017, 24(4): 473-479. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201704015.htm

    Chen M Y. Research on design of automatic detection system for soil limit moisture content[J]. Chinese Journal of Engineering Design, 2017, 24(4): 473-479. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201704015.htm

    [36]

    王清海, 杨贵林, 李友, 等. 细粒土界限含水率液、塑限联合测定自动化方案的分析与探讨[J]. 隧道建设, 2020, 40(5): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202005005.htm

    Wang Q H, Yang G L, Li Y, et al. Analysis and discussion on automatic scheme of combined determination of liquid and plastic limits for limit moisture content of fine-grained soil[J]. Tunnel Construction, 2020, 40(5): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202005005.htm

    [37]

    王苏明, 翟培军, 牛兴荣. 实验室能力验证实践[M]. 北京: 中国标准出版社, 2006.

    Wang S M, Zhai P J, Niu X R. Laboratory proficiency testing practice[M]. Beijing: Standards Press of China, 2006.

    [38]

    赵秀峰, 高孝礼, 曹景洋, 等. 土的两种塑限测试方法精密度比较[J]. 工程勘察, 2021, 49(6): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202106006.htm

    Zhao X F, Gao X L, Cao J Y, et al. Comparison of the precision of two plastic limit testing methods of soil[J]. Geotechnical Investigation & Surveying, 2021, 49(6): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202106006.htm

  • 加载中

(1)

(6)

计量
  • 文章访问数:  1696
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2020-08-28
修回日期:  2021-05-06
录用日期:  2021-07-02
刊出日期:  2021-07-28

目录