中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究

刘冬, 贺灵, 文雪琴, 孙彬彬, 曾道明, 吴超, 成晓梦. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139
引用本文: 刘冬, 贺灵, 文雪琴, 孙彬彬, 曾道明, 吴超, 成晓梦. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139
LIU Dong, HE Ling, WEN Xue-qin, SUN Bin-bin, ZENG Dao-ming, WU Chao, CHENG Xiao-meng. Concentration of Heavy Metals in Soils and Rice and Its Influence by Soil pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139
Citation: LIU Dong, HE Ling, WEN Xue-qin, SUN Bin-bin, ZENG Dao-ming, WU Chao, CHENG Xiao-meng. Concentration of Heavy Metals in Soils and Rice and Its Influence by Soil pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139

金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究

  • 基金项目:
    中国地质调查局地质调查项目(DD20160320,DD20190522-03)
详细信息
    作者简介: 刘冬, 硕士研究生, 主要从事生态地球化学研究。E-mail: 1095046245@qq.com
    通讯作者: 贺灵, 高级工程师, 主要从事生态地球化学调查与研究。E-mail: lingh1237@163.com
  • 中图分类号: S151.93

Concentration of Heavy Metals in Soils and Rice and Its Influence by Soil pH in Jinqu Basin

More Information
  • 作物对土壤中重金属的吸收受作物种类、采集部位及土壤理化性质等多方面因素的影响。近年来,金衢盆地土壤酸化面积逐年增大,酸化程度逐渐加深,其对土壤-作物系统中重金属元素的活动影响尚不明确。本文基于金衢盆地典型地区264组根系土壤-稻米样品分析数据,开展土壤、作物的重金属含量特征及其影响因素的研究,重点讨论了土壤pH对作物吸收重金属的影响。结果表明:①264件土壤中多数重金属元素的变异系数大于0.5,As、Cd、Cr、Cu、Ni和Zn元素之间呈显著正相关(P < 0.01)。土壤Cd超标样品23件,超标率为8.7%;As、Cr、Cu、Hg、Ni、Pb和Zn超标样品均未超过2件。②稻米中Cu、Zn与Cd含量呈显著正相关,Cd的富集系数(BCF)高于植物营养元素Cu、Zn。③稻米中Zn和Cu在P < 0.1水平上与pH值呈显著正相关。Cd、Cr、Hg的BCF与pH值之间存在一定的负相关性。研究认为,适当调低土壤的酸碱度会削减土壤中Cd、Hg等重金属元素的活性,从而减少农作物对重金属的吸收转运。研究结果可为当地粮食安全生产决策提供科学数据,为土地管护提供参考依据。

  • 加载中
  • 图 1  研究区位置示意图

    Figure 1. 

    图 2  农作物中Cd含量与土壤pH值的相关关系

    Figure 2. 

    图 3  农作物中(a)Zn、(b)Cu含量与土壤pH值相关关系

    Figure 3. 

    图 4  农作物中重金属(a)Cd、(b)Cr、(c)Hg的富集系数与土壤pH值的相关关系

    Figure 4. 

    表 1  土壤及作物样品分析方法

    Table 1.  Analysis methods of the soil and rice samples

    样品类型 测定指标或元素 分析方法 检出限 标样合格率(%) 重复样合格率(%)
    土壤 pH 电位法 0.1 100.0 100.0
    As HG-AFS 1 100.0 100.0
    Cd ICP-MS 30 100.0 100.0
    Cr 压片制样,XRF 5 100.0 100.0
    Cu ICP-MS 1 100.0 100.0
    Hg CV-AFS 0.5 100.0 100.0
    Ni ICP-MS 2 100.0 100.0
    Pb ICP-MS 2 100.0 100.0
    Zn ICP-MS 2 100.0 100.0
    作物 As 微波消解,AFS 0.1 100.0 100.0
    Cd 微波消解,ICP-MS 10 100.0 100.0
    Cr 微波消解,ICP-MS 0.2 100.0 100.0
    Cu 微波消解,ICP-MS 1 100.0 100.0
    Hg 微波消解,ICP-MS 0.5 100.0 100.0
    Ni 微波消解,ICP-MS 0.2 100.0 100.0
    Pb 微波消解,ICP-MS 0.5 100.0 100.0
    Zn 微波消解,ICP-OES 2 100.0 100.0
    注:Cd、Hg元素含量检出限单位为ng/g,其余元素均为mg/kg。
    下载: 导出CSV

    表 2  土壤中重金属元素统计值(N=264)、区域背景值与标准限值

    Table 2.  Concentrations of heavy metals from study area, regional background and the safety limits

    统计量 As Cd Cr Cu Hg Ni Pb Zn
    最大值(mg/kg) 39.6 2.65 223.2 113.3 2.02 77.5 127.3 583.7
    最小值(mg/kg) 1.5 0.10 11.6 6.1 0.02 1.03 21.8 42.9
    平均值(mg/kg) 6.0 0.28 50.7 22.6 0.13 17.9 36.2 84.8
    中位数(mg/kg) 4.8 0.23 44.3 20.4 0.11 14.2 35.1 76.3
    标准差(mg/kg) 4.0 0.24 28.7 12.3 0.14 11.7 9.7 46.1
    变异系数(%) 0.67 0.83 0.57 0.55 1.02 0.65 0.27 0.54
    全国土壤背景值(mg/kg) 11.2 0.097 53.9 20.0 0.047 23.4 23.6 67.7
    金衢盆地背景值(mg/kg) 6.49 0.19 39.1 18.03 0.098 12.45 35.12 72.13
    污染累积指数范围(平均值) 0.23~6.10(0.93) 0.51~13.67(1.46) 0.30~5.71(1.30) 0.34~6.28(1.26) 0.23~20.65(1.34) 0.00~6.22(1.44) 0.62~3.63(1.03) 0.59~8.09(1.18)
    单项污染指数范围(平均值) 0.05~1.32(0.24) 0.29~3.11(0.76) 0.07~0.72(0.19) 0.12~2.27(0.41) 0.08~4.05(0.29) 0.00~0.89(0.25) 0.12~0.64(0.39) 0.23~1.87(0.40)
    下载: 导出CSV

    表 3  土壤重金属之间的Pearson相关系数

    Table 3.  Pearson correlation coefficients of heavy metals in soils

    重金属元素 As Cd Cr Cu Hg Ni Pb Zn
    As 1 - - - - - - -
    Cd 0.179** 1 - - - - - -
    Cr 0.298** 0.360** 1 - - - - -
    Cu 0.192** 0.555** 0.630** 1 - - - -
    Hg 0.113 0.186** 0.062 0.099 1 - - -
    Ni 0.243** 0.404** 0.764** 0.625** 0.121 1 - -
    Pb 0.094 0.581** -0.033 0.173** 0.162** 0.044 1 -
    Zn 0.164** 0.719** 0.367** 0.613** 0.047 0.451** 0.525** 1
    注:标注“**”表示在0.01水平(双侧)上显著相关。
    下载: 导出CSV

    表 4  稻米重金属含量与超标情况统计(N=264)

    Table 4.  Contents and statistical characteristics of heavy metals in rices

    统计项目 As Cd Cr Cu Hg Ni Pb Zn
    含量平均值(mg/kg) 0.154 0.125 0.196 3.157 0.005 0.428 0.071 20.308
    稻米安全标准值(mg/kg) - 0.2 1 - 0.02 - 0.2 -
    超标件数(件) - 55 1 - 0 - 6 -
    稻米超标率(%) - 20.83 0.38 - 0 - 2.27 -
    平均富集系数 0.033 0.543 0.005 0.161 0.049 0.031 0.002 0.266
    下载: 导出CSV
  • [1]

    赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm

    Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm

    [2]

    徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802006.htm

    Xu J M, Meng J, Liu X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802006.htm

    [3]

    庄国泰. 我国土壤污染现状与防控策略[J]. 中国科学院院刊, 2015, 30(4): 476-483. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504007.htm

    Zhuang G T. Current situation of national soil pollution and strategies on prevention and control[J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(4): 476-483. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504007.htm

    [4]

    赵其国, 黄国勤, 钱海燕. 生态农业与食品安全[J]. 土壤学报, 2007, 44(6): 1127-1134. doi: 10.3321/j.issn:0564-3929.2007.06.024

    Zhao Q G, Huang G Q, Qian H Y. Ecological agriculture and food safety[J]. Acta Pedologica Sinica, 2007, 44(6): 1127-1134. doi: 10.3321/j.issn:0564-3929.2007.06.024

    [5]

    张桃林. 科学认识和防治耕地土壤重金属污染[J]. 土壤, 2015, 47(3): 435-439. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503001.htm

    Zhang T L. More comprehensive understanding and effective control of heavy metal pollution of cultivated soils in China[J]. Soils, 2015, 47(3): 435-439. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503001.htm

    [6]

    黎承波. 重金属在土壤-植物系统中的迁移转化研究进展[J]. 山东化工, 2017, 46(14): 186-187. doi: 10.3969/j.issn.1008-021X.2017.14.075

    Li C B. Research advance in the migration and transformation of heavy metals in soil-plant system[J]. Shandong Chemical Industry, 2017, 46(14): 186-187. doi: 10.3969/j.issn.1008-021X.2017.14.075

    [7]

    周国华, 孙彬彬, 贺灵, 等. 安溪土壤-茶叶铅含量关系与土壤铅临界值研究[J]. 物探与化探, 2016, 40(1): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201601026.htm

    Zhou G H, Sun B B, He L, et al. The relationship of lead concentration between soils and tea leaves and the critical value of lead for soil in Anxi, Fujian Province[J]. Geophysical and Geochemical Exploration, 2016, 40(1): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201601026.htm

    [8]

    赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028

    Zhao D J, Wang X Q. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the Karst area of Yunnan, Guizhou, Guangxi[J]. China Environmental Science, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028

    [9]

    李坤权, 刘建国, 陆小龙, 等. 水稻不同品种对镉的吸收及分配的差异[J]. 农业环境科学报, 2003, 22(5): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200305003.htm

    Li K Q, Liu J G, Lu X L, et al. Uptake and distribution of cadmium in different rice cultivars[J]. Journal of Agro-Environment Science, 2003, 22(5): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200305003.htm

    [10]

    周国华, 汪庆华, 董岩翔, 等. 土壤-农产品系统中重金属含量关系的影响因素分析[J]. 物探化探计算技术, 2007, 29(1): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT2007S1052.htm

    Zhou G H, Wang Q H, Dong Y X, et al. Factors affecting heavy metal concentrations in the soil-agricultural product system[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(1): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT2007S1052.htm

    [11]

    Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced exogenous humic substances[J]. Chemosphere, 2003, 52(1): 265-275. doi: 10.1016/S0045-6535(03)00185-1

    [12]

    Romero F M, Villalobos M, Aguirre R, et al. Solid-phase control on lead bioaccessibility in smelter-impacted soils[J]. Archives of Environmental Contamination and Toxicology, 2008, 55: 566-575. doi: 10.1007/s00244-008-9152-3

    [13]

    Madrid F, Diaz-Barrientos E, Madrid L. Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla[J]. Environmental Pollution, 2008, 156(3): 605-610. doi: 10.1016/j.envpol.2008.06.023

    [14]

    Moreno A M, Quintana J R, Pérez L, et al. Factors influencing lead sorption-desorption at variable added metal concentrations in rhodoxeralfs[J]. Chemosphere, 2006, 64: 758-763. doi: 10.1016/j.chemosphere.2005.10.058

    [15]

    Vega F A, Covelo E F, Andrade M L. Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics[J]. Journal of Colloid & Interface Science, 2006, 298(2): 582-592. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S002197970600018X&originContentFamily=serial&_origin=article&_ts=1432650164&md5=e525c248d4626a3d2e9e9dee8d068b9f

    [16]

    夏伟, 吴冬妹, 袁知洋. 土壤-农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例[J]. 资源环境与工程, 2018, 32(4): 563-568. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804010.htm

    Xia W, Wu D M, Yuan Z Y. Study on the migration and transformation law of heavy metals in soil-crop system[J]. Resources Environment & Engineering, 2018, 32(4): 563-568. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804010.htm

    [17]

    李杰, 朱立新, 康志强. 南宁市郊周边农田土壤-农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201801006.htm

    Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China[J]. Carsologica Sinica, 2018, 37(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201801006.htm

    [18]

    刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm

    Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Chinese Journal of Environmental Science, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm

    [19]

    潘永敏, 廖启林, 华明, 等. 江苏南部典型地区耕作层土壤及农作物中重金属评价[J]. 物探与化探, 2014, 38(2): 319-324. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201402020.htm

    Pan Y M, Liao Q L, Hua M, et al. An evaluation of the heavy metal content in the plough layer and crops in southern Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2014, 38(2): 319-324. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201402020.htm

    [20]

    温晓华, 张琢, 何中发. 根系土中重金属元素分布特征及在农作物中的迁移[J]. 上海国土资源, 2012(2): 34-38. doi: 10.3969/j.issn.2095-1329.2012.02.010

    Wen X H, Zhang Z, He Z F. The distribution of heavy metals in the rhizosphere and their migration in crops[J]. Shanghai Land & Resources, 2012(2): 34-38. doi: 10.3969/j.issn.2095-1329.2012.02.010

    [21]

    胡留杰, 廖敦秀, 马连杰, 等. 西南茶区土壤-茶树系统重金属研究现状与趋势[J]. 农学学报, 2017(11): 19-22. doi: 10.11923/j.issn.2095-4050.cjas17040010

    Hu L J, Liao D X, Ma L J, et al. Heavy metals of soil-tea system in southwest tea area: Research status and trend[J]. Chinese Countryside Well-off Technology, 2017(11): 19-22. doi: 10.11923/j.issn.2095-4050.cjas17040010

    [22]

    曹宁, 孙彬彬, 曾道明, 等. 珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究[J]. 岩矿测试, 2020, 39(5): 739-752. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912240177

    Cao N, Sun B B, Zeng D M, et al. Study on the relationship between the contents of heavy metals in rice and root soils in typical townships in the western Pearl River Delta[J]. Rock and Mineral Analysis, 2020, 39(5): 739-752. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912240177

    [23]

    王腾云, 周国华, 孙彬彬, 等. 福建沿海地区土壤-稻谷重金属含量关系及影响因素研究[J]. 岩矿测试, 2016, 35(3): 295-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.013

    Wang T Y, Zhou G H, Sun B B, et al. The relationship between heavy metal contents of soils and rice in coastal areas, Fujian Province, including influencing factors[J]. Rock and Mineral Analysis, 2016, 35(3): 295-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.013

    [24]

    马宏宏, 彭敏, 郭飞, 等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 2020, 42(3): 1514-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103055.htm

    Ma H H, Peng M, Guo F, et al. Factors affecting the translocation and accumulation of cadmium in a soil-crop system in a typical karst area of Guangxi Province, China[J]. Environmental Science, 2020, 42(3): 1514-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103055.htm

    [25]

    周亚龙, 杨志斌, 王乔林, 等. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析[J]. 环境科学, 2021, 42(4): 2003-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104047.htm

    Zhou Y L, Yang Z B, Wang Q L, et al. Potential ecological risk assessment and source analysis of heavy metals in soil-crop system in Xiong'an New District[J]. Environmental Science, 2021, 42(4): 2003-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104047.htm

    [26]

    章明奎, 常悦畅. 近50年浙江省耕作土壤有机质和酸碱度的变化特征[J]. 环境科学, 2013, 34(11): 4399-4404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201311042.htm

    Zhang M K, Chang Y C. Changing characteristics of organic matter and pH of cultivated soils in Zhejiang Province over the last 50 years[J]. Chinese Journal of Environmental Science, 2013, 34(11): 4399-4404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201311042.htm

    [27]

    朱真令. 基于GIS的龙游县土壤pH值时空演变[J]. 浙江农业科学, 2020, 61(1): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202001053.htm

    Zhu Z L. Temporal and spatial changing of farmland pH value in Longyou Country based on GIS[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(1): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202001053.htm

    [28]

    汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报, 2007, 26(5): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST200702016.htm

    Wang Q H, Dong Y X, Zhou G H, et al. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2007, 26(5): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST200702016.htm

    [29]

    魏复盛, 陈静生. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199104006.htm

    Wei F S, Chen J S. Study on the background contents on 61 elements of soils in China[J]. Chinese Journal of Environmental Science, 1991, 12(4): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199104006.htm

    [30]

    Liu Y Z, Xiao T F, Ning Z P, et al. High cadmium concentratio n in soil in the Three Gorges Region: Geogenic source and potential bioavailability[J]. Applied Geochemistry, 2013, 37: 149-156. http://www.researchgate.net/profile/Ning_Zengping/publication/258725493_High_cadmium_concentration_in_soil_in_the_Three_Gorges_region_Geogenic_source_and_potential_bioavailability/links/57eb9c4808ae66664092e072.pdf

    [31]

    Loganathan P, Vigneswaran S, Kandasamy J, et al. Cadmium sorption and desorption in soils: A review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42: 489-533.

    [32]

    Rizwan M, Ali S, Adrees M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182: 90-105.

    [33]

    Li X H, Zhou Q X, Sun X Y, et al. Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L. ) cultivars[J]. Food Chemistry, 2016, 194: 101-110. http://www.researchgate.net/profile/Wenjie_Ren2/publication/282638502_Effects_of_cadmium_on_uptake_and_translocation_of_nutrient_elements_in_different_welsh_onion_Allium_fistulosum_L_cultivars/links/566d13e808aea0892c5010b0.pdf

    [34]

    鄢明才, 迟清华. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997, 21(6): 451-459. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199706008.htm

    Yan M C, Chi Q H. Chemical compositions of continental crust and rocks in eastern China[J]. Geophysical and Geochemical Exploration, 1997, 21(6): 451-459. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199706008.htm

    [35]

    周通, 潘根兴, 李恋卿, 等. 南方几种水稻土重金属污染下的土壤呼吸及微生物学效应[J]. 农业环境科学学报, 2009, 28(12): 2568-2573. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912025.htm

    Zhou T, Pan G X, Li L Q, et al. Effects of heavy metals on soil respiration and microbial indices in paddy field of South China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2568-2573. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912025.htm

    [36]

    谢丹, 徐仁扣, 蒋新, 等. 不同体系中不同土壤对Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)吸附能力的比较[J]. 农业环境科学学报, 2005, 25(3): 704-710. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200505013.htm

    Xie D, Xu R K, Jiang X, et al. Adsorption ability for Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) among different soils under different systems[J]. Journal of Agro-Environment Science, 2005, 25(3): 704-710. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200505013.htm

    [37]

    王岚, 王亚平, 许春雪, 等. 水稻土中重金属元素Cd、Pb的竞争吸附——以长株潭地区水稻土为例[J]. 地质通报, 2012, 31(4): 601-607. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201204013.htm

    Wang L, Wang Y P, Xu C X, et al. Competitive adsorption of cadmium and lead in paddy soils: A case study of paddy soils in Changsha-Zhuzhou-Xiangtan area of Hunan Province[J]. Geological Bulletin of China, 2012, 31(4): 601-607. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201204013.htm

    [38]

    Zhang J R, Li H Z, Zhou Y Z, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China[J]. Environmental Pollution, 2018, 235: 710-719.

    [39]

    Hu Y N, Cheng H F, Tao S. The challenges and solutions for cadmium-contaminated rice in China: A critical review[J]. Environment International, 2016, 92: 515-532. http://60.247.50.249/uploadCms/file/20600/papers_upload/20161008090810421440.pdf

    [40]

    魏建宏, 罗琳, 刘艳, 等. 赤泥颗粒和赤泥对污染土壤镉形态分布及水稻吸收的效应[J]. 农业环境科学学报, 2012, 31(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201202018.htm

    Wei J H, Luo L, Liu Y, et al. Effects of red mud granules and red mud on the distribution of Cd fractions and Cd uptake by the paddy rice in a contaminated soil[J]. Journal of Agro-Environment Science, 2012, 31(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201202018.htm

    [41]

    Chang C Y, Yu H Y, Chen J J, et al. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China[J]. Environmental Monitoring and Assessment, 2014, 186: 1547-1560.

    [42]

    王亚婷, 党媛, 杜焰玲, 等. 成都平原典型稻作土壤重金属镉有效性及主要驱动机制[J]. 江苏农业科学, 2020, 48(1): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202001042.htm

    Wang Y T, Dang Y, Du Y L, et al. Availability and main driving mechanism of heavy metal Cd in typical paddy soils in Chengdu Plain[J]. Jiangsu Agricultural Sciences, 2020, 48(1): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202001042.htm

  • 加载中

(4)

(4)

计量
  • 文章访问数:  1214
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2020-11-10
修回日期:  2021-03-05
录用日期:  2021-09-10
刊出日期:  2021-11-28

目录