中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成

刘婉, 李丹丹, 刘盛遨. 多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成[J]. 岩矿测试, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163
引用本文: 刘婉, 李丹丹, 刘盛遨. 多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成[J]. 岩矿测试, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163
LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163
Citation: LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成

  • 基金项目:
    国家重点研发计划项目重点专项"变革性技术关键科学问题"(2019YFA0708400)
详细信息
    作者简介: 刘婉, 硕士研究生, 地质工程专业。E-mail: 2157190006@cugb.edu.cn
    通讯作者: 李丹丹, 博士, 讲师, 研究方向为非传统稳定同位素地球化学及同位素分馏实验研究。E-mail: ldd@cugb.edu.cn
  • 中图分类号: O628

Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS

More Information
  • 近年来,铜同位素在表生环境和生物地球化学中的应用越来越广泛,尤其是土壤的铜同位素组成可以示踪环境污染物来源及生物地球化学过程。目前,对土壤铜同位素进行研究时,主要以硅酸岩标准物质为标样来衡量土壤样品铜同位素测定的准确性和精确性。但土壤与硅酸岩中铜、基质离子及有机质的含量等存在很大差异(如:硅酸岩中的铜含量>80μg/g,一些土壤中的铜含量很低, < 20μg/g),将硅酸岩标准物质作为标样来监测土壤样品的数据质量缺乏代表性。为了弥补这一缺陷,本文精确测定4个国家土壤标准物质(GBW07443、GBW07425、GBW07427、GBW07389)的铜同位素组成,并将其作为检验土壤样品铜同位素测定过程中的标准。实验中采用高温高压反应釜消解样品,利用AG MP-1M树脂进行纯化,全流程空白 < 2ng,回收率≥ 98%,通过多接收器电感耦合等离子体质谱仪(MC-ICP-MS)采用标样-样品-标样间插法进行仪器分馏校正,δ65Cu的长期测试外精度优于0.05‰(n=306,2SD)。GBW07443、GBW07425、GBW07427和GBW07389的铜同位素组成分别为-0.04‰±0.04‰(n=9,2SD)、-0.07‰±0.05‰(n=12,2SD)、-0.06‰±0.04‰(n=12,2SD)、-0.02‰±0.06‰(n=12,2SD)。这些土壤标准物质的铜同位素组成均位于0附近,大致为自然界土壤铜同位素比值变化范围(-0.5‰~+0.5‰)的中间值,且样品容易获得,其化学和铜同位素组成均一,适合作为监控土壤铜同位素化学及质谱分析数据可靠性的标准物质。

  • 加载中
  • 图 1  土壤标准物质铜同位素组成与自然界土壤样品的数据比较(数据来源:Bigalke等,2010[17];Bigalke等,2011[18];Liu等,2014[23];Kríbek等,2018[27];Kusonwiriyawong等,2017[28];Mathur等,2012[32];Li等,2009[51])

    Figure 1. 

    表 1  GBW07443、GBW07425、GBW07427和GBW07389土壤标准物质化学成分参考值

    Table 1.  Reference values of components in GBW07443, GBW07425, GBW07427 and GBW07389

    标准物质编号 各成分含量(%) 各成分含量(μg/g)
    SiO2 Al2O3 CaO MgO Na2O K2O TFe2O3 Ti Co Cu
    GBW07443
    (水稻土)
    - - 1.48 - - 2.8 7.03 - 19.5 47
    GBW07425
    (辽河平原土壤)
    69.42 13.14 1.33 1.2 1.98 2.7 4.21 0.39 11.6 21.4
    GBW07427
    (华北平原土壤)
    64.88 11.76 5 2.05 1.86 2.27 4.11 0.38 11.3 21.6
    GBW07389
    (泛滥平原沉积物)
    59.68 12.62 6.91 2.24 1.62 2.4 4.73 0.37 13 25
    注:原始数据来自中国国家标准局官网:http://www.crmrm.com/。GBW07443是土壤形态成分分析标准物质(水稻土),缺乏部分全岩成分数据。
    下载: 导出CSV

    表 2  土壤样品的铜分离纯化方法(改自Liu等,2014[33])

    Table 2.  Protocols of ion-exchange chromatographic conditions of Cu (Modified from Liu, et al, 2014[33])

    试剂 体积(mL) 纯化步骤
    AG MP-1M (100~200目) 2 加树脂
    8mol/L盐酸+0.001%双氧水 10 调环境
    样品+8mol/L盐酸+0.001%双氧水 1 上样
    8mol/L盐酸+0.001%双氧水 9 淋洗基质离子
    8mol/L盐酸+0.001%双氧水 28 收集铜
    下载: 导出CSV

    表 3  MC-ICP-MS仪器主要工作参数

    Table 3.  Working conditions of MC-ICP-MS instrument

    工作参数 实验条件 工作参数 实验条件
    工作电压 2000V 冷却气流速 16L/min
    射频功率 1250W 辅助气流速 1.0L/min
    Cu灵敏度 50V/(mg·mL-1) 雾化气流速 1.0L/min
    截取锥 镍锥(X) 法拉第接收杯L3 63Cu
    分辨率 低(LR) 法拉第接收杯L1 65Cu
    进样速率 100μL/min 积分时间 4.097s
    样品载气 Ar 测试block(cycle) 3(30)
    下载: 导出CSV

    表 4  本文报道的土壤标准物质铜同位素组成(相对于NIST SRM 976)

    Table 4.  Analytical results of Cu isotope composition of soil reference materials (relative to NIST SRM 976)

    标准物质编号 土壤类型 Cu含量(μg/g) δ65Cu(‰) 2SD Ti/Cu n
    测定值 平均值 测定值 平均值
    GBW07443
    (GSF-3)
    水稻土 47 -0.04 -0.03
    -0.06
    -0.04 0.03 0.04
    0.04
    0.04 0.005 0.004
    0.001
    9
    GBW07425
    (GSS-11)
    辽河平原土壤 21.4 -0.05 -0.04
    -0.10 -0.09
    -0.07 0.02 0.07
    0.04 0.07
    0.05 0.028 0.020
    0.021 0.010
    12
    GBW07427
    (GSS-13)
    华北平原土壤 21.6 -0.04 -0.06
    -0.07 -0.06
    -0.06 0.02 0.05
    0.05 0.04
    0.04 0.029 0.004
    0.005 0.010
    12
    GBW07389
    (GSS-33)
    泛滥平原沉积物 25 -0.02 -0.02
    -0.01 -0.04
    -0.02 0.07 0.03
    0.07 0.06
    0.06 0.011 0.033
    0.001 0.029
    12
    注:表中Ti/Cu值代表三次化学纯化后溶液中Ti与Cu的摩尔比值。
    下载: 导出CSV

    表 5  实验室标准溶液GSB Cu和NIST SRM 3114的铜同位素组成测定结果

    Table 5.  Analytical results of Cu isotope compositions of standard solution GSB Cu and NIST SRM 3114

    样品名称 铜同位素测试值(δ±2SD)
    本研究 推荐值
    GSB Cu 0.44‰±0.05‰
    (n=6)
    0.44‰±0.05‰(n=32)[33]
    0.45‰±0.05‰(n=13)[40]
    0.47‰±0.06‰(n=12)[41]
    NIST SRM 3114 0.18‰±0.05‰
    (n=56)
    0.18‰±0.04‰(n=5)[38]
    下载: 导出CSV
  • [1]

    Huang J, Liu S A, Gao Y, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research Solid Earth, 2016, 121: 7086-7100. doi: 10.1002/2016JB013095

    [2]

    Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 543-600. doi: 10.2138/rmg.2017.82.13

    [3]

    Liu S A, Liu P P, Lv Y, et al. Cu and Zn isotope frac-tionation during oceanic alteration: Implications for oceanic Cu and Zn cycles[J]. Geochimica Et Cosmochimica Acta, 2019, 257: 191-205. doi: 10.1016/j.gca.2019.04.026

    [4]

    范飞鹏, 肖惠良, 陈乐柱, 等. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究[J]. 岩矿测试, 2017, 36(4): 420-429. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609010133

    Fan F P, Xiao H L, Chen L Z, et al. Copper isotope studies of a deep ore body in the Xinliaodong copper-polymetallic deposit, eastern Guangdong Province[J]. Rock and Mineral Analysis, 2017, 36(4): 420-429. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609010133

    [5]

    赵晨辉, 王成辉, 赵如意, 等. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义[J]. 岩矿测试, 2020, 39(6): 908-920. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007310107

    Zhao C H, Wang C H, Zhao R Y, et al. Isotopic composition and alteration characteristics of dacite pouphy, and their prospecting significance in the Dabaoshan copper deposit of Guangdong Province[J]. Rock and Mineral Analysis, 2020, 39(6): 908-920. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007310107

    [6]

    Rouxel O, Fouquet Y, Ludden J N. Copper isotope system-atics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the mid-Atlantic ridge[J]. Economic Geology, 2004, 99(3): 585-600. doi: 10.2113/gsecongeo.99.3.585

    [7]

    Mirnejad H, Mathur R, Einali M, et al. A comparative copper isotope study of porphyry copper deposits in Iran[J]. Geochemistry: Exploration Environment Analysis, 2010, 10(4): 413-418. doi: 10.1144/1467-7873/09-229

    [8]

    Ikehata K, Notsu K, Hirata T, et al. Copper isotope chara-cteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS[J]. Economic Geology, 2011, 106(2): 307-316. doi: 10.2113/econgeo.106.2.307

    [9]

    Palacios C, Rouxel O, Reich M, et al. Pleistocene re-cycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence[J]. Mineralium Deposita, 2011, 46(1): 1-7. doi: 10.1007/s00126-010-0315-6

    [10]

    Mathur R, Ruiz J, Casselman M J, et al. Use of Cu iso-topes to distinguish primary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru[J]. Mineralium Deposita, 2012, 47(7): 755-762. doi: 10.1007/s00126-012-0439-y

    [11]

    Molnar F, Manttari I, O'Brien H, et al. Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland[J]. Ore Geology Reviews, 2016, 77: 133-162. doi: 10.1016/j.oregeorev.2016.02.012

    [12]

    Wang P, Dong G C, Santosh M, et al. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, southwest China[J]. Ore Geology Reviews, 2017, 88: 822-831. doi: 10.1016/j.oregeorev.2016.11.023

    [13]

    Zhao Y, Xue C, Liu S A, et al. Copper isotope fraction-ation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos, 2017, 286: 206-215.

    [14]

    Syverson D D, Borrok D M, Niebuhr S, et al. Chalcopyrite-dissolved Cu isotope exchange at hydrothermal-conditions: Experimental constraints at 350℃ and 50MPa[J]. Geochimica Et Cosmochimica Acta, 2021, 298: 191-206. doi: 10.1016/j.gca.2021.02.005

    [15]

    Liu S A, Huang J, Liu J G, et al. Copper isotopic com-position of the silicate earth[J]. Earth & Planetary Science Letters, 2015, 427(1): 95-103. http://www.sciencedirect.com/science/article/pii/S0012821X15004240

    [16]

    Huang J, Huang F, Wang Z C, et al. Copper isotope frac-tionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica Et Cosmochimica Acta, 2017, 211: 48-63. doi: 10.1016/j.gca.2017.05.007

    [17]

    Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica Et Cosmochimica Acta, 2010, 74(23): 6801-6813. doi: 10.1016/j.gca.2010.08.044

    [18]

    Bigalke M, Weyer S, Wilcke W. Stable Cu isotope fraction-ation in soils during oxic weathering and podzolization[J]. Geochimica Et Cosmochimica Acta, 2011, 75(11): 3119-3134. doi: 10.1016/j.gca.2011.03.005

    [19]

    Babcsányi I, Imfeld G, Granet M, et al. Copper stable isotopes to trace copper behavior in wetland systems[J]. Environmental Science and Technology, 2014, 48(10): 5520-5529. doi: 10.1021/es405688v

    [20]

    Fekiacova Z, Cornu S, Pichat S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of The Total Environment, 2015, 517: 96-105. doi: 10.1016/j.scitotenv.2015.02.046

    [21]

    Su J, Mathur R, Brumm G, et al. Tracing copper migra-tion in the Tongling area through copper isotope values in soils and waters[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2661. doi: 10.3390/ijerph15122661

    [22]

    Zeng J, Han G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110663. http://www.ncbi.nlm.nih.gov/pubmed/32330789

    [23]

    Liu S A, Teng F Z, Li S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles[J]. Geochimica Et Cosmochimica Acta, 2014, 146: 59-75. doi: 10.1016/j.gca.2014.09.040

    [24]

    Vareda J P, Valente A J M, Duraes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review[J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126

    [25]

    Mathur R, Munk L, Nguyen M, et al. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska[J]. Economic Geology, 2013, 108(3): 529-541. doi: 10.2113/econgeo.108.3.529

    [26]

    Wang Q, Zhou L, Little S H, et al. The geochemical behavior of Cu and its isotopes in the Yangtze River[J]. Science of The Total Environment, 2020, 728: 138428. doi: 10.1016/j.scitotenv.2020.138428

    [27]

    Kříbek B, Sípková A, Vojtěch E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135. doi: 10.1016/j.chemgeo.2018.05.035

    [28]

    Kusonwiriyawong C, Bigalke M, Cornu S, et al. Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol[J]. Geoderma, 2017, 300: 44-54. doi: 10.1016/j.geoderma.2017.04.003

    [29]

    Kíbek B, Míková J, Knésl I, et al. Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile[J]. Applied Geochemistry, 2020: 104741. http://www.sciencedirect.com/science/article/pii/S088329272030233X

    [30]

    Masbou J, Viers J, Grande J A, et al. Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions[J]. Environmental Pollution, 2020, 266(Part 2): 115104. http://www.sciencedirect.com/science/article/pii/S0269749120308411

    [31]

    张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803290033

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803290033

    [32]

    Mathur R, Jin L, Prush V, et al. Cu isotopes and concen-trations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, 304-305: 175-184. doi: 10.1016/j.chemgeo.2012.02.015

    [33]

    Liu S A, Li D, Li S, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(1): 122-133. doi: 10.1039/C3JA50232E

    [34]

    Dideriksen K, Baker J A, Stipp S L S. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica Et Cosmochimica Acta, 2006, 70(1): 118-132. doi: 10.1016/j.gca.2005.08.019

    [35]

    Amet Q, Fitoussi C. Chemical procedure for Zn purification and double spike method for high precision measurement of Zn isotopes by MC-ICPMS[J]. International Journal of Mass Spectrometry, 2020, 457: 116413. doi: 10.1016/j.ijms.2020.116413

    [36]

    Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1): 139-149. http://www.sciencedirect.com/science/article/pii/S0009254199000765

    [37]

    Sossi P A, Halverson G P, Nebel O, et al. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 129-149. doi: 10.1111/j.1751-908X.2014.00298.x

    [38]

    Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280-287. doi: 10.1039/C4JA00488D

    [39]

    Bao Z, Zong C, Liang P, et al. Direct measurement of Cu and Pb isotopic ratios without column chemistry for bronze materials using MC-ICP-MS[J]. Analytical Methods, 2020, 12: 2599-2607. doi: 10.1039/D0AY00561D

    [40]

    Zhang Y, Bao Z, Lv N, et al. Copper isotope ratio mea-surements of Cu-dominated minerals without column chromatography using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 609. doi: 10.3389/fchem.2020.00609

    [41]

    Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 2732-2739. doi: 10.1039/D0JA00096E

    [42]

    Lv N, Bao Z, Chen L, et al. Accurate determination of Cu isotope compositions in Cu-bearing minerals using microdrilling and MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2020, 457: 116414. doi: 10.1016/j.ijms.2020.116414

    [43]

    Yuan H, Yuan W, Bao Z, et al. Development of two new copper isotope standard solutions and their copper isotopic compositions[J]. Geostandards and Geoanalytical Research, 2016, 41: 77-84. http://onlinelibrary.wiley.com/doi/10.1111/ggr.12127/abstract

    [44]

    Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper isotopic analysis in geological and biological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44: 349-362. doi: 10.1111/ggr.12315

    [45]

    唐索寒, 闫斌, 朱祥坤, 等. 玄武岩标准样品铁铜锌同位素组成[J]. 岩矿测试, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    Tang S H, Y B, Zhu X K, et al. Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J]. Rock and Mineral Analysis, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    [46]

    Feng C X, Liu S, Chi G X, et al. Zinc, copper, and strontium isotopic variability in the Baiyangping Cu-Pb-Zn-Ag polymetallic ore field, Lanping Basin, southwest China[J]. Acta Geochimica, 2021, 16: 1-18.

    [47]

    李丹丹. 低温过程中Cu-Zn同位素分馏的实验地球化学研究[D]. 北京: 中国地质大学(北京), 2015.

    Li D D. Experimental study of Cu and Zn isotope fractionation at low temperature[D]. Beijing: China University of Geosciences (Beijing), 2015.

    [48]

    Hu Y, Teng F Z. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 338-346. doi: 10.1039/C8JA00335A

    [49]

    Moynier F, Koeberl C, Beck P, et al. Isotopic fraction-ation of Cu in tektites[J]. Geochimica Et Cosmochimica Acta, 2010, 74(2): 799-807. doi: 10.1016/j.gca.2009.10.012

    [50]

    Moeller K, Schoenberg R, Pedersen R B, et al. Calibra-tion of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 177-199. doi: 10.1111/j.1751-908X.2011.00153.x

    [51]

    Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology, 2009, 258(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.06.047

  • 加载中

(1)

(5)

计量
  • 文章访问数:  1180
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2020-12-13
修回日期:  2021-05-17
录用日期:  2021-07-02
刊出日期:  2021-07-28

目录