-
摘要:
海泡石是一种十分重要的非金属矿,被广泛应用于航空、畜牧、化工环保等领域中,贸易活动十分活跃。鉴于中国一直没有海泡石标准物质,国际上的海泡石标准物质定值组分少,为了满足相关研究需求,本文研制了湖南湘潭的海泡石标准物质(GBW07138)。对Ba、Be、Bi、Cd、Ce、Co、Cr、Cs、La、Li、Lu、U、Nb、Nd、Ni、Pb、SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、TiO2共24种组分进行均匀性和稳定性检验。针对不同含量、不同性质的组分,采用合理的国家标准方法检验了20种组分的RSD小于3%,其余4种组分Bi、La、Lu、Mo的RSD略大于3%,方差检验的F值均小于列表临界值[F0.05(29,60)=1.65],表明该标准物质均匀性良好。在稳定性考察期内,24种组分的含量无统计学上的明显变化,表明该标准物质稳定性良好。由9家实验室采用重量法、容量法、X射线荧光光谱法、电感耦合等离子体质谱法等传统化学分析方法和现代仪器分析方法协作定值,最终定值组分63种,涵盖了主量、微量及全部稀土元素,其中海泡石特征组分MgO和烧失量(LOI)的含量分别为18%±0.2%和8.55%±0.19%,这两种组分与现有的标准物质形成一定阶梯性,能够更好地满足海泡石成分分析测试需求。该海泡石标准物质可用于地质找矿、地球化学调查、地质矿产产品测试以及其他行业相关领域样品测试的质量监控标准。而且在研制该标准物质过程中,改良或开发的一些新方法可为后续开发海泡石标准物质提供技术支持。
Abstract:BACKGROUND Sepiolite is a very important non-metallic mineral, which is widely used in aviation, animal husbandry, the chemical industry, environmental protection and other fields. Sepiolite is in great demand and needs a lot of analysis and testing. However, the existing sepiolite reference materials are inadequate and do not satisfy the needs of sepiolite composition analysis. Furthermore, there are no sepiolite reference materials in China, making it necessary to develop one.
OBJECTIVES To prepare a reference material for composition analysis of sepiolite whose certified value components cover as many elements as possible.
METHODS Sepiolite samples were collected from Xiangtan, Hunan Province. The samples were subjected to primary crushing, coarse-grain sieving, inactivation, fine grinding and fine grain sieving. After passing the initial inspection, samples were bottled and numbered. Random samples were taken for homogeneity test, stability test. 24 components were selected for homogeneity and stability test.
RESULTS The results showed that the RSD of 20 components were less than 3%, and the F value of the variance test was less than the critical value of the list[F0.05(29, 60)=1.65], indicating that the homogeneity of the reference material was good. During the investigation period, the contents of 24 components had no significant change, indicating that the standard material was stable. Nine laboratories cooperated with traditional chemical analysis methods and modern instrumental analysis methods to determine the value. The final values were 63 components, covering major, trace and all rare earth elements. The contents of characteristic components MgO and LOI were 18% and 8.55%, respectively. These two components form a certain ladder with the existing reference materials, which can better satisfy the requirements of sepiolite composition analysis.
CONCLUSIONS The developed sepiolite reference material can be used as the quality control standards for geological prospecting, geochemical investigation and testing of geological and mineral products, as well as for other industries to analyze similar materials. Moreover, in the process of developing the reference material, improvements and developments to the new methods will provide technical support for the subsequent development of the sepiolite reference material.
-
Key words:
- sepiolite /
- reference material /
- homogeneity test /
- stability test /
- certified values
-
-
表 1 海泡石候选物均匀性检验结果
Table 1. Homogeneity test results of the candidates
统计参数
Statistical parametersBa Be Bi Cd Ce Co Cr Cs 含量测定平均值(×10-6)
Average(×10-6)72.6 3.68 0.18 1.90 37.3 14.2 118 3.96 RSD(%) 1.78 2.27 4.33 2.82 1.28 1.52 1.01 1.43 F实测值
Fmeasure1.10 1.19 1.13 0.95 0.95 1.03 0.93 1.17 Ubb 0.23 0.020 0.002 0.013 0.12 0.022 0.30 0.013 统计参数
Statistical parametersLa Li Lu Mo Nb Nd Ni Pb 含量测定平均值(×10-6)
Average(×10-6)30.4 56.2 0.26 0.22 3.71 23.2 59.8 8.65 RSD(%) 3.72 2.82 4.50 9.49 2.69 1.47 1.51 2.74 F实测值
Fmeasure0.98 1.01 0.83 1.43 1.13 1.06 0.91 1.04 Ubb 0.28 0.089 0.003 0.007 0.021 0.049 0.23 0.027 统计参数
Statistical parametersSiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 含量测定平均值(×10-2)
Average(×10-2)63.4 4.46 1.49 18.0 2.58 0.11 0.32 0.18 RSD(%) 0.17 1.04 2.2 0.42 1.77 2.1 1.13 2.59 F实测值
Fmeasure1.03 1.27 1.01 1.19 1.24 0.86 0.55 1.81 Ubb 0.011 0.013 0.002 0.018 0.012 0.001 0.001 0.002 表 2 海泡石候选物长期稳定性检验结果
Table 2. Long term stability test results of the candidates
样品
Samples参数
Parameters组分含量(×10-6) Components content (×10-6) Ba Be Bi Cd Ce Co Cr Cs 海泡石
Sepiolite平均值
Average71.9 3.69 0.18 1.95 36.0 14.5 118 3.93 b1 0.2253 0.0137 0.0013 -0.0050 -0.3087 -0.2227 -0.5633 -0.0260 t0.05×s(b1) 3.6349 0.2095 0.0049 0.0513 2.1964 0.44048 2.7345 0.1291 Us 5.72 0.33 0.0077 0.081 3.45 0.69 4.30 0.20 样品
Samples参数
Parameters组分含量(×10-6) Components content (×10-6) La Li Lu Mo Nb Nd Ni Pb 海泡石
Sepiolite平均值
Average30.6 57.7 0.26 0.20 3.85 23.7 58.9 8.68 b1 -0.1137 -0.6933 0.0050 -0.0017 0.1100 -0.2930 -0.4230 0.0633 t0.05×s(b1) 1.2168 2.2426 0.0084 0.0223 0.1812 1.6752 1.7402 0.2533 Us 1.91 3.53 0.013 0.035 0.28 2.63 2.74 0.40 样品
Samples参数
Parameters组分含量(×10-2) Components content (×10-2) K2O TiO2 SiO2 Al2O3 Fe2O3 MgO CaO Na2O 海泡石
Sepiolite平均值
Average63.3 4.44 1.48 18.0 2.57 0.11 0.32 0.18 b1 0.0640 -0.0063 0.0077 -0.0077 0.0027 0.0003 -0.0003 0.0003 t0.05×s(b1) 0.1146 0.0293 0.0113 0.0674 0.02055 0.0032 0.0020 0.0020 Us 0.18 0.046 0.018 0.11 0.032 0.005 0.0032 0.00329 表 3 海泡石候选物短期稳定性检验结果
Table 3. Short term stability test results of the candidates
温度(℃)
Temperature
(℃)参数
Parameter组分含量Components content (×10-6) Ba Be Bi Cd Ce Co Cr Cs -24℃ 平均值
Average70.9 3.71 0.18 1.66 37.4 14.7 115 3.99 b1 0.39 0.01 0.001 0 0.2 0.04 0.23 0.01 t0.05×s(b1) 0.79 0.06 0.003 0.04 0.21 0.18 0.26 0.06 60℃ 平均值
Average72 3.7 0.18 1.77 35.9 14.9 115 3.94 b1 0.06 0.02 0.001 0 -0.07 0.23 0.2 0.026 t0.05×s(b1) 0.24 0.05 0.003 0.02 0.34 0.31 1.31 0.026 温度(℃)
Temperature
(℃)参数
Parameter组分含量Components content (×10-6) La Li Lu Mo Nb Nd Ni Pb -24℃ 平均值
Average31 57.4 0.25 0.23 3.91 23.8 57.1 8.6 b1 0.12 0.29 0.001 0 0 0.05 0.13 0.016 t0.05×s(b1) 0.16 0.31 0.003 0.01 0.04 0.08 0.37 0.021 60℃ 平均值
Average30.4 58.2 0.26 0.22 3.99 23.2 59.3 8.76 b1 0.06 0.37 0 -0.006 0 0.23 0.36 -0.01 t0.05×s(b1) 0.55 0.63 0.01 0.01 0.02 0.24 0.47 0.07 温度(℃)
Temperature
(℃)参数
Parameter组分含量(×10-2)
Components content (×10-2)SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 -24℃ 平均值Average 63.5 4.42 1.45 18.0 2.55 0.11 0.32 0.19 b1 -0.02 -0.007 0 0.02 -0.001 0 -0.001 0 t0.05×s(b1) 0.03 0.013 0.01 0.04 0.003 0.001 0.003 0.01 60℃ 平均值Average 63.5 4.43 1.46 18.0 2.59 0.12 0.32 0.19 b1 -0.001 0.002 0.001 -0.01 0.001 0.0007 0.001 -0.001 t0.05×s(b1) 0.003 0.005 0.003 0.024 0.01 0.0011 0.003 0.003 表 4 海泡石候选物分析指标及其分析方法
Table 4. Analytical methods of elements in sepiolite candidates
组分
Component测试方法
Analytical methods组分
Component测试方法
Analytical methodsAg ICP-MS, ES Sb ICP-MS, AFS As ICP-MS, AFS Sc ICP-MS, ICP-OES B ICP-OES, ES Sm ICP-MS, ICP-OES Ba ICP-MS, ICP-OES Sn ICP-MS, ES Be ICP-MS, ICP-OES Sr ICP-MS, ICP-OES Bi ICP-MS, AFS Ta ICP-MS Cd ICP-MS, GFAAS Tb ICP-MS, ICP-OES Ce ICP-MS, ICP-OES Th ICP-MS Co ICP-MS, ICP-OES Tm ICP-MS, ICP-OES Cr ICP-MS, ICP-OES U ICP-MS, LF Cs ICP-MS, ICP-OES V ICP-MS, ICP-OES Cu ICP-MS, ICP-OES W ICP-MS, ICP-OES Dy ICP-MS, ICP-OES Y ICP-MS Er ICP-MS, ICP-OES Yb ICP-MS, ICP-OES Eu ICP-MS, ICP-OES Zn ICP-MS, ICP-OES Ga ICP-MS Zr ICP-MS, ICP-OES Gd ICP-MS, ICP-OES SiO2 GR, VOL, XRF Hf ICP-MS Al2O3 VOL, ICP-OES, XRF Hg CVAAS, AFS Fe2O3 COL, ICP-OES, XRF Ho ICP-MS, ICP-OES FeO VOL In ICP-MS, GFAAS MgO VOL, ICP-OES, XRF La ICP-MS, ICP-OES CaO VOL, ICP-OES, XRF Li ICP-MS, ICP-OES Na2O AAS, ICP-OES, XRF Lu ICP-MS, ICP-OES K2O AAS, ICP-OES, XRF Nb ICP-MS TiO2 COL, ICP-OES, XRF Nd ICP-MS, ICP-OES MnO AAS, ICP-OES, XRF Ni ICP-MS, ICP-OES P2O5 COL, ICP-OES, XRF Pb ICP-MS, ICP-OES H2O+ GR Pr ICP-MS, ICP-OES CO2 VOL, IR Rb ICP-MS, ICP-OES TC VOL, IR S ICP-OES, IR, VOL LOI GR 注:AFS—原子荧光光谱法;GFAAS—石墨炉原子吸收光谱法;CVAAS—冷蒸汽原子吸收光谱法;ES—一米光栅发射光谱法;IR—红外光谱法;VOL—容量法;LF—极谱法;GR—重量法;COL—比色法。 表 5 海泡石标准物质的认定值及其扩展不确定度
Table 5. Certified values and expanded uncertainty of the sepiolite standard material
组分
Component单位
Unit认定值及扩展不确定度
Certified values and expanded uncertainty组分
Component单位
Unit认定值及扩展不确定度
Certified values and expanded uncertaintyAg 10-6 0.15±0.02 Sb 10-6 (0.57) As 10-6 2.3±0.3 Sc 10-6 5.6±0.5 B 10-6 6.9±0.5 Sm 10-6 4.3±0.5 Ba 10-6 72±7 Sn 10-6 1.2±0.2 Be 10-6 3.6±0.4 Sr 10-6 49±5 Bi 10-6 0.18±0.03 Ta 10-6 0.30±0.04 Cd 10-6 (1.8) Tb 10-6 0.62±0.05 Ce 10-6 39±4 Th 10-6 3.8±0.4 Co 10-6 15±2 Tm 10-6 0.27±0.03 Cr 10-6 116±9 U 10-6 5.3±0.4 Cs 10-6 4.0±0.3 V 10-6 81±7 Cu 10-6 25±2 W 10-6 0.50±0.07 Dy 10-6 3.3±0.3 Y 10-6 23±3 Er 10-6 1.8±0.2 Yb 10-6 1.6±0.2 Eu 10-6 0.8±0.1 Zn 10-6 105±8 Ga 10-6 5.9±0.4 Zr 10-6 43±4 Gd 10-6 4.0±0.6 SiO2 10-2 63.55±0.19 Hf 10-6 (1.2) Al2O3 10-2 4.45±0.07 Hg 10-6 0.16±0.02 TFe2O3 10-2 1.46±0.07 Ho 10-6 0.66±0.05 FeO 10-2 (0.10) In 10-6 0.027±0.003 MgO 10-2 18±0.2 La 10-6 30±4 CaO 10-2 2.56±0.09 Li 10-6 55±5 Na2O 10-2 0.12±0.01 Lu 10-6 0.26±0.02 K2O 10-2 0.32±0.02 Mo 10-6 (0.25) P2O5 10-2 0.41±0.02 Nb 10-6 3.9±0.4 TiO2 10-2 0.18±0.01 Nd 10-6 24±3 MnO 10-2 0.022±0.003 Ni 10-6 57±4 H2O+ 10-2 6.39±0.18 Pb 10-6 8.7±0.7 CO2 10-2 1.63±0.06 Pr 10-6 6.0±0.6 TC 10-2 0.63±0.03 Rb 10-6 20±2 LOI 10-2 8.55±0.19 S 10-6 (136) 表 6 监控样品质量监控结果
Table 6. Quality control results of the monitoring samples
样品
Samples参数
Parameters组分Components Ag As B Ba Be Bi Cd Ce Co Cr Cs Cu GBW07103 认定值(×10-6)
Certified value(×10-6)0.033 2.1 24 343 12.4 0.53 0.029 108 3.4 3.6 38.4 3.2 平均值(×10-6)
Average(×10-6)0.034 2.13 24.5 322 11.9 0.53 0.031 113 3.60 3.54 39.1 3.45 相对误差(%)
Relative error(%)1.49 0.71 1.03 3.16 2.06 0.00 3.33 2.26 2.86 0.84 0.90 3.76 GBW07121 认定值(×10-6)
Certified value(×10-6)0.027 0.25 15 1140 1.7 0.094 0.06 48 7.5 23 2.6 2.6 平均值(×10-6)
Average(×10-6)0.025 0.26 15.3 1210 1.64 0.10 0.055 46.3 7.21 22.5 2.54 2.63 相对误差(%)
Relative error(%)3.85 1.96 0.99 2.98 1.80 3.59 4.35 1.80 1.97 1.10 1.17 0.57 样品
Samples参数
Parameters组分Components Dy Er Eu Ga Gd Hf Hg* Ho In La Li Lu GBW07103 认定值(×10-6)
Certified value(×10-6)10.2 6.5 0.85 19 9.3 6.3 4.3 2.05 0.02 54 131 1.15 平均值(×10-6)
Average(×10-6)10.5 6.50 0.86 19.5 9.05 6.11 4.24 2.12 0.021 55.9 137 1.16 相对误差(%)
Relative error(%)2.94 0.00 1.18 2.63 2.69 3.02 1.40 3.41 5.00 3.52 4.58 0.87 GBW07121 认定值(×10-6)
Certified value(×10-6)1.52 0.76 1 18.2 2.4 3.3 4 0.27 0.03 25 24.7 0.11 平均值(×10-6)
Average(×10-6)1.52 0.76 1.01 17.7 2.32 3.26 3.89 0.27 0.031 24.4 23.9 0.11 相对误差(%)
Relative error(%)0.00 0.00 1.00 2.75 3.33 1.21 2.75 0.00 3.33 2.40 3.24 0.00 样品
Samples参数
Parameters组分Components Mo Nb Nd Ni Pb Pr Rb S Sb Sc Sm Sn GBW07103 认定值(×10-6)
Certified value(×10-6)3.5 40 47 2.3 31 12.7 466 380 0.21 6.1 9.7 12.5 平均值(×10-6)
Average(×10-6)3.44 41.2 47.0 2.40 32.0 13.0 474 369 0.22 6.25 10.0 12.3 相对误差(%)
Relative error(%)1.71 3.00 0.00 4.35 3.23 2.36 1.72 2.89 4.76 2.46 3.09 1.60 GBW07121 认定值(×10-6)
Certified value(×10-6)0.27 4.5 21 13 7.6 5.7 57 50 0.063 5 3.3 0.8 平均值(×10-6)
Average(×10-6)0.28 4.43 20.5 13.5 7.45 5.62 55.0 52.0 0.066 5.03 3.22 0.85 相对误差(%)
Relative error(%)3.70 1.56 2.38 3.85 1.97 1.40 3.51 4.00 4.76 0.60 2.42 6.25 样品
Samples参数
Parameters组分Components Sr Ta Tb Th Tm U V W Y Yb Zn Zr GBW07103 认定值(×10-6)
Certified values(×10-6)106 7.2 1.65 54 1.06 18.8 24 8.4 62 7.4 28 167 平均值(×10-6)
Average(×10-6)110 7.31 1.71 55.5 1.11 18.3 23.3 8.22 62.6 7.51 31.0 156 相对误差(%)
Relative error(%)3.77 1.53 3.64 2.78 4.72 2.66 2.92 2.14 0.97 1.49 10.71 6.59 GBW07121 认定值(×10-6)
Certified value(×10-6)690 0.34 0.29 1.9 0.11 0.4 45 0.42 7.3 0.69 46 90 平均值(×10-6)
Average(×10-6)679 0.33 0.30 1.85 0.11 0.39 46.6 0.44 6.93 0.71 40.6 101 相对误差(%)
Relative error(%)1.59 2.94 3.45 2.63 0.00 2.50 3.56 4.76 5.07 2.90 11.74 12.22 样品
Samples参数
Parameters组分Components SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O P2O5 TiO2 MnO H2O+ CO2 LOI GBW07103 认定值(×10-2)
Certified value(×10-2)72.83 13.4 1 1.03 0.42 1.55 3.13 5.01 0.093 0.29 0.06 0.61 0.15 0.69 平均值(×10-2)
Average(×10-2)72.8 13.3 0.97 1.06 0.45 1.53 3.11 5.11 0.095 0.30 0.058 0.62 0.14 0.67 相对误差(%)
Relative error(%)0.04 0.75 3.00 2.91 7.14 1.29 0.64 2.00 2.15 3.45 3.33 1.64 6.67 2.90 GBW07121 认定值(×10-2)
Certified value(×10-2)66.3 16.3 1.34 1.6 1.63 2.66 5.3 2.6 0.131 0.297 0.056 - 0.35 1.28 平均值(×10-2)
Average(×10-2)66.4 16.2 1.37 1.55 1.61 2.69 5.22 2.56 0.13 0.28 0.054 - 0.33 1.23 相对误差(%)
Relative error(%)0.15 0.61 2.24 3.13 1.23 1.13 1.51 1.54 0.76 5.72 3.57 - 5.71 3.91 注:“*”代表组分(Hg)含量单位为10-9。 -
[1] 李文光. 海泡石粘土矿床的成矿地质特征及找矿远景[J]. 化工矿产地质, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006
Li W G. Minerogenetic geological features of sepiolite clay ore deposit and its prospect of ore-search[J]. Geological Institute for Chemical Minerals, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006
[2] 周永兴. 从专利变化看国内海泡石应用趋势[J]. 中国非金属矿工业导刊, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001
Zhou Y X. Application trend of sepiolite in China from patent changes[J]. China Non-metallic Mining Industry Herald, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001
[3] 陈镇, 向明辉, 蒋鹏, 等. 低品位海泡石的酸热改性及对吸附性能的影响[J]. 湖南工程学院学报, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015
Chen Z, Xiang M H, Jiang P, et al. Modification of low grade sepiolite and its effect on adsorption properties[J]. Journal of Hunan Institute of Engineering, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015
[4] Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016, 280: 57-66. doi: 10.1016/j.geoderma.2016.06.015
[5] Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2
[6] Zhou J, Fan Z Y, Tian Q, et al. Removal of heavy metal ions by porous sepiolite-based membrane[J]. Micro & Nano Letters, 2020, 15(13): 903-906. http://www.researchgate.net/publication/347579018_Removal_of_heavy_metal_ions_by_porous_sepiolite-based_membrane
[7] Xie S, Wang L, Xu Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. Science of The Total Environment, doi. org/10.1016/j. scitotenv. 2020.140009. doi: 10.1016/j.scitotenv.2020.140009
[8] Song N, Hursthouse A, Mclellan I, et al. Treatment of en-vironmental contamination using sepiolite: Current approaches and future potential[J]. Environmental Geochemistry and Health, 2021, 4: 2679-2697. doi: 10.1007/s10653-020-00705-0
[9] 孟雪芬, 冯辉霞, 张斌, 等. 海泡石的改性方法及其应用研究进展[J]. 应用化工, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039
Meng X F, Feng H X, Zhang B, et al. Progress in modification method and application of sepiolite[J]. Applied Chemical Industry, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039
[10] 温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010
Wen X, Gu J C, Wei C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J]. Environment Protection of Chemical Industry, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010
[11] 曹璟, 陈镇, 张小刚, 等. 改性海泡石在焦化废水处理中的应用[J]. 广东化工, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071
Cao J, Chen Z, Zhang X G, et al. Application of modified sepiolite in coking wastewater treatment[J]. Guangdong Chemical Industry, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071
[12] Wang F, Ding D P, Hao M, et al. Novel fabrication of a sepiolite supported cobalt-based catalyst via a coprecipitation-reduction method[J]. Applied Clay Science, 2020, 200: 105909. http://www.sciencedirect.com/science/article/pii/S0169131720304749
[13] 汤敏, 汪形艳, 贺玥莹, 等. 三维花球状BiOCl/海泡石的制备及其在可见光催化降解双酚A中的应用[J]. 现代化工, 2018, 38(10): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201810029.htm
Tang M, Wang X Y, He Y Y, et al. Preparation of 3D flower-like BiOCl/sepiolite and its application in visible light photocatalytic degradation of bisphenol A[J]. Modern Chemical Industry, 2018, 38(10): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201810029.htm
[14] Dong N, Ye Q, Chen M Y, et al. Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation[J]. Chinese Journal of Catalysis, 2020, 41: 1734-1744. doi: 10.1016/S1872-2067(20)63599-9
[15] 唐永翔, 董晓晗, 韩焱, 等. 用于环己烷氧化的Co3O4/海泡石催化剂的制备和第一性原理研究[J]. 常州大学学报(自然科学版), 2020, 30(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY201802005.htm
Tang Y X, Dong X H, Han Y, et al. Preparation and first principle study of Co3O4/sepiolite catalyst for cyclohexane oxidation[J]. Journal of Changzhou University (Natural Science Edition), 2020, 30(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY201802005.htm
[16] 胡安, 袁鸽, 张宁, 等. 黏土矿物在电池领域的应用研究进展[J]. 新能源进展, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009
Hu A, Yuan G, Zhang N, et al. Advances in the application of clay minerals in the field of batteries[J]. Advances in New and Renewable Energy, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009
[17] 王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
[18] Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. doi: 10.1111/j.1751-908X.2015.00392.x
[19] Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. doi: 10.1111/ggr.12152
[20] 方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
[21] 王祎亚, 张中, 王毅民, 等. X射线荧光光谱在标准物质和标准方法研究中的应用评介[J]. 冶金分析, 2020, 40(10): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010010.htm
Wang Y Y, Zhang Z, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in geological reference materials and standard methods[J]. Metallurgical Analysis, 2020, 40(10): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010010.htm
[22] 王雪莹, 王飞飞, 孙效轩, 等. 钛矿石与钛精矿X射线荧光光谱分析与化学分析用标准样品的研制[J]. 中国无机分析化学, 2018, 8(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201801006.htm
Wang X Y, Wang F F, Sun X X, et al. Development of certified reference materials of titanium ore and ilmenite concentrate for X-ray fluorescence spectrometry & chemical analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201801006.htm
[23] 隆英兰, 王景凤, 韩俊丽, 等. 电感耦合等离子体原子发射光谱法同时测定多金属矿石中铜、铅、锌、银[J]. 化学分析计量, 2020, 29(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202006014.htm
Long Y L, Wang J F, Han J L, et al. Simultaneous determination of copper, lead, zinc and silver in polymetallic ores by inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202006014.htm
[24] 鲁忍. 微波消解-电感耦合等离子体原子发射光谱法测定钨矿石中钨[J]. 化学分析计量, 2020, 29(6): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202006032.htm
Lu R. Determination of tungsten in tungsten ore by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2020, 29(6): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202006032.htm
[25] Skrzypek G, Sadler R. A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials[J]. Rapid Communications in Mass Spectrometry, 2011, 25(11): 1625-1630. http://www.onacademic.com/detail/journal_1000034272756310_6c1d.html
[26] 徐鹏, 孙亚莉. Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J]. 分析化学, 2010, 38(4): 581-584. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201004034.htm
Xu P, Sun Y L. Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4): 581-584. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201004034.htm
[27] 辛文彩, 林学辉, 徐磊. 电感耦合等离子体质谱法测定海洋沉积物中34种痕量元素[J]. 理化检验(化学分册), 2012, 48(4): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204029.htm
Xin W C, Lin X H, Xu L. ICP-MS determination of 34 trace elements in marine sediments[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204029.htm
[28] Low F, Zhang L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J]. Talanta, 2012, 101: 346-352. http://www.onacademic.com/detail/journal_1000035563379610_3d0c.html
[29] 张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
[30] 王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906030079
Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906030079
[31] 郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
Zheng Z K, Wang J S, Zeng J P. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
[32] 王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904005.htm
Wang L Q, Wei S, Wang J S. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectro-metry[J]. Geological Survey and Research, 2019, 42(4): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904005.htm
-