Comparison of Two Different Sample Digestion Methods for Determination of Tungsten, Molybdenum, and Bismuth in Polymetallic Ore by Inductively Coupled Plasma-Optical Emission Spectrometry
-
摘要:
当前多金属伴生矿中钨钼铋元素的测定方法主要是传统的硫氰酸钾比色法和EDTA容量法,均为单元素分析,操作过程繁琐,分析效率低,检测周期长,难以满足大批量样品简便、快速的分析要求。本文改进了传统的单元素分析法,对比了盐酸-磷酸-高氯酸-硝酸四酸和盐酸-硝酸-高氯酸三酸两种消解体系,并结合电感耦合等离子体发射光谱法(ICP-OES),建立了一种同时测定多金属伴生矿中钨、钼、铋的快速分析法。结果表明:合理引入磷酸的四酸消解法对样品的消解更为彻底,钨、钼、铋的测定结果准确度更高,各元素测定值和标准值的相对误差介于-5.36%~-1.39%,精密度较高(RSD ≤ 4.18%),方法检出限介于0.0027%~0.0037%。本方法应用于分析湖南郴州某地区多金属伴生矿实际样品,各元素加标回收率介于95.0%~103.0%,各项技术指标均优于三酸消解法。本方法提高了分析效率,结果准确可靠,适用于多金属伴生矿样品中钨钼铋及其他主次量元素的批量检测。
Abstract:BACKGROUND Currently, tungsten, molybdenum, and bismuth contents are mainly determined by the traditional potassium thiocyanate colorimetric method and EDTA volumetric method. These methods are based on single-element analysis, which has a complicated operation process, low analysis efficiency, and long detection cycle. It is difficult to meet the requirements of accurate and rapid determination of many samples.
OBJECTIVES To improve the traditional single-element analysis method for the determination of tungsten, molybdenum, and bismuth in polymetallic ore.
METHODS A rapid method for the simultaneous determination of tungsten, molybdenum, and bismuth in the ore sample was developed by comparing the two digestion methods of HCl-H3PO4-HClO4-HNO3 and HCl-HClO4-HNO3, and was subsequently combined with inductively coupled plasma-optical emission spectrometry.
RESULTS Tungsten, molybdenum, and bismuth in the sample were digested more thoroughly using the four-acid digestion method with a reasonable addition of phosphoric acid. The relative error between the determined and certified values of each element ranged from -5.36% to -1.39%, which indicated higher accuracy. The relative standard deviation was ≤ 4.18%, and the detection limits of the method ranged from 0.0027% to 0.0037%. The method was employed for the analysis of actual samples of the polymetallic ore from a certain area in Chenzhou, Hunan Province. The recovery of each element ranged from 95.0% to 103.0%. All the technical indexes were better than those of the three-acid digestion method.
CONCLUSIONS The developed method significantly improved the analysis efficiency and gave accurate and reliable results. The method has been verified by actual samples and is suitable for batch detection of tungsten, molybdenum, bismuth, and other major and trace elements in the polymetallic ore samples.
-
表 1 四酸和三酸方法处理样品后盐酸不同用量对测定结果的影响
Table 1. Analytical results of elements in samples dissoluted by four-acid digestion and three-acid digestion with different hydrochloric acid dosage
待测元素 标准值(%) 四酸消解法 盐酸(5mL) 盐酸(10mL) 盐酸(15mL) 盐酸(20mL) 盐酸(25mL) 测定值 相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)W 0.390 0.321 -18.0 0.340 -12.8 0.361 -7.69 0.380 -2.56 0.373 -5.13 Mo 0.056 0.043 -23.2 0.046 -17.9 0.048 -14.3 0.053 -5.36 0.051 -8.93 Bi 0.120 0.071 -40.8 0.080 -33.3 0.099 -17.5 0.115 -4.17 0.103 -14.2 待测元素 标准值(%) 三酸消解法 盐酸(5mL) 盐酸(10mL) 盐酸(15mL) 盐酸(20mL) 盐酸(25mL) 测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)测定值
(%)相对误差
(%)W 0.390 0.311 -20.5 0.330 -15.4 0.343 -12.1 0.360 -7.69 0.357 -8.46 Mo 0.056 0.041 -26.8 0.044 -21.4 0.048 -14.3 0.050 -9.12 0.049 -12.5 Bi 0.120 0.070 -41.7 0.076 -36.7 0.092 -23.3 0.109 -9.17 0.101 -9.50 表 2 四酸消解法溶样测试结果
Table 2. Analytical results of elements in samples dissoluted by four-acid digestion method
待测元素 标准值
(%)盐酸-磷酸混合酸25mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸-磷酸混合酸20mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸-磷酸混合酸15mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸-磷酸混合酸10mL,高氯酸-硝酸混合酸5mL,盐酸20mL 测定值(%) 溶液状态 测定值(%) 溶液状态 测定值(%) 溶液状态 测定值(%) 溶液状态 W 0.390 0.351 灰白色沉淀的透亮溶液 0.380 极少量灰白色沉淀的透亮溶液 0.363 极少量灰白色沉淀的透亮溶液 0.352 灰白色沉淀的透亮溶液 Mo 0.056 0.051 0.053 0.050 0.048 Bi 0.120 0.081 0.115 0.093 0.086 表 3 三酸消解法溶样测试结果
Table 3. Analytical results of elements in samples dissoluted by three-acid digestion method
待测元素 标准值
(%)盐酸25mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸20mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸25mL,高氯酸-硝酸混合酸5mL,盐酸20mL 盐酸25mL,高氯酸-硝酸混合酸5mL,盐酸20mL 测定值(%) 溶液状态 测定值(%) 溶液状态 测定值(%) 溶液状态 测定值(%) 溶液状态 W 0.390 0.290 大量灰白色沉淀的浑浊溶液 0.342 灰白色沉淀的浑浊溶液 0.372 灰白色沉淀的浑浊溶液 0.336 灰白色沉淀的浑浊溶液 Mo 0.056 0.038 0.039 0.046 0.039 Bi 0.120 0.073 0.080 0.087 0.071 表 4 四酸和三酸消解法的准确度和精密度测试结果
Table 4. Accuracy and precision tests of the four-acid and three-acid digestion methods
标准物质编号 待测元素 四酸消解法 三酸消解法 标准值
(%)平均测定值
(%)相对误差
(%)RSD
(%)标准值
(%)平均测定值
(%)相对误差
(%)RSD
(%)21R355 (美国研制) W 0.390 0.381 -2.31 1.66 0.390 0.359 -7.95 5.51 Mo 0.056 0.053 -5.36 4.10 0.056 0.050 -10.7 7.87 Bi 0.120 0.114 -5.00 2.85 0.120 0.107 -10.8 8.07 33M 7035-93 (美国研制) W 0.360 0.354 -1.39 1.20 0.360 0.336 -6.67 5.12 Mo 0.045 0.043 -4.44 4.18 0.045 0.039 -13.3 12.3 Bi 0.110 0.106 -4.55 2.91 0.110 0.099 -11.0 7.11 表 5 四酸和三酸消解法处理样品回收率测试结果
Table 5. Recovery tests of the samples dissoluted with four-acid and three-acid digestion methods
原矿样品编号 待测元素 四酸消解法 三酸消解法 测定值
(%)加标量
(%)测得总量
(%)回收率
(%)测定值
(%)加标量
(%)测得总量
(%)回收率
(%)N1 W 0.340 0.390 0.734 101.0 0.340 0.390 0.755 106.0 Mo 0.045 0.056 0.102 102.0 0.045 0.056 0.098 94.6 Bi 0.100 0.120 0.218 98.3 0.100 0.120 0.212 93.3 N2 W 0.350 0.390 0.748 102.0 0.350 0.390 0.717 94.1 Mo 0.052 0.056 0.105 95.3 0.051 0.056 0.104 94.6 Bi 0.110 0.120 0.231 101.0 0.110 0.120 0.220 91.7 N3 W 0.380 0.390 0.762 97.9 0.380 0.390 0.805 109.0 Mo 0.047 0.056 0.105 103.0 0.047 0.056 0.099 92.9 Bi 0.120 0.120 0.235 95.8 0.120 0.120 0.229 90.8 N4 W 0.360 0.390 0.746 99.0 0.360 0.390 0.727 94.1 Mo 0.043 0.056 0.097 96.4 0.043 0.056 0.103 107.0 Bi 0.100 0.120 0.214 95.0 0.100 0.120 0.208 90.0 N5 W 0.400 0.390 0.798 102.0 0.400 0.390 0.813 106.0 Mo 0.046 0.056 0.104 103.0 0.046 0.056 0.098 92.9 Bi 0.110 0.120 0.224 95.0 0.110 0.120 0.243 111.0 N6 W 0.410 0.390 0.788 96.9 0.410 0.390 0.831 108.0 Mo 0.048 0.056 0.102 96.4 0.048 0.056 0.110 111.0 Bi 0.130 0.120 0.244 95.0 0.130 0.120 0.238 90.0 -
[1] 党铭铭, 刘民华, 伍惠玲, 等. 金属矿中钨钼铋检测方法研究综述[J]. 云南化工, 2019, 46(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201906004.htm
Dang M M, Liu M H, Wu H L, et al. Survey on detection methods of tungsten, molybdenum and niobium in metal ore[J]. Yunnan Chemical Technology, 2019, 46(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201906004.htm
[2] 夏辉, 王小强, 杜天军, 等. 五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J]. 岩矿测试, 2015, 34(3): 297-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.006
Xia H, Wang X Q, Du T J, et al. Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3): 297-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.006
[3] 《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011: 185-325.
Editorial board of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition, The third volume)[M]. Beijing: Geological Publishing House, 2011: 185-325.
[4] 宁新霞, 程文康, 史沉勇. 硫氰酸盐分光光度法测定高铜钨精矿中三氧化钨含量[J]. 中国钨业, 2020, 35(1): 67-72. doi: 10.3969/j.issn.1009-0622.2020.01.012
Ning X X, Cheng W K, Shi C Y. Determination of tungsten trioxide in high copper tungsten concentrate by thiocyanate spectrophotometry[J]. China Molybdenum Industry, 2020, 35(1): 67-72. doi: 10.3969/j.issn.1009-0622.2020.01.012
[5] 叶新民. 重量法测定高锡钨精矿中的钨[J]. 化学分析计量, 2016, 25(1): 67-69. doi: 10.3969/j.issn.1008-6145.2016.01.019
Ye X M. Determination of tungsten in tungsten concentrate with high stannum by gravimetric method[J]. Chemical Analysis and Meterage, 2016, 25(1): 67-69. doi: 10.3969/j.issn.1008-6145.2016.01.019
[6] 王海军, 魏曾, 程文康, 等. 硫氰酸盐双波长分光光度法测定高铅矿石中钼量[J]. 理化检验(化学分册), 2016, 52(10): 1234-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610035.htm
Wang H J, Wei Z, Cheng W K, et al. Thiocyanate dual wavelength spectrophotometric determination of molybdenum in high lead ores[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(10): 1234-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610035.htm
[7] 王娜, 陈枫, 王家松, 等. 酸溶-碱提取-硫氰酸盐分光光度法测定岩石矿物中的钼含量[J]. 理化检验(化学分册), 2019, 55(12): 1455-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201912022.htm
Wang N, Chen F, Wang J S, et al. Determination of molybdenum content in rock minerals by acid solution-alkali extraction-thiocyanate photometric method[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(12): 1455-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201912022.htm
[8] 王香婷, 樊雪梅, 王书民. 亚甲基蓝-高碘酸钾催化动力学光度法测定钼尾矿中钼[J]. 冶金分析, 2015, 35(6): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201506014.htm
Wang X T, Fan X M, Wang S M. Determination of molybdenum in molybdenum tailing by methylene blue-potassium periodate catalytic kinetic spectrophotometry[J]. Metallurgical Analysis, 2015, 35(6): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201506014.htm
[9] 周煜, 谭艳山, 朱丽亚, 等. 过氧化钠熔融-硫氰酸铵差示光度法测定钼精矿和钼焙砂中的钼[J]. 冶金分析, 2012, 32(9): 68-72. doi: 10.3969/j.issn.1000-7571.2012.09.016
Zhou Y, Tan Y S, Zhu L Y, et al. Determination of molybdenum in molybdenum concentrate and molybdenum calcine by sodium peroxide fusion-ammonnium thiocyanate differential spectrophotometry[J]. Metallurgical Analysis, 2012, 32(9): 68-72. doi: 10.3969/j.issn.1000-7571.2012.09.016
[10] 彭玲, 梁玉兰. 高氯酸分解8-羟基喹啉重量法测定钼矿中的钼[J]. 中国钨业, 2009, 24(4): 43-45. doi: 10.3969/j.issn.1009-0622.2009.04.012
Peng L, Liang Y L. Molybdenum determination by 8-hydroxyquinoline gravimetric method in perchloric acid[J]. China Molybdenum Industry, 2009, 24(4): 43-45. doi: 10.3969/j.issn.1009-0622.2009.04.012
[11] 屈伟, 周成英, 蔡镠璐, 等. 原子吸收光谱法间接测定钼精矿中钼的研究[J]. 光谱学与光谱分析, 2017, 37(3): 984-989. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703064.htm
Qu W, Zhou C Y, Cai L L, et al. Study determination of molybdenum in molybdenum concentrate by atomic absorption spectrometry indirectly[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 984-989. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703064.htm
[12] 贺攀红, 龚治湘. 火焰原子吸收光谱法测定矿石中微量钼[J]. 理化检验(化学分册), 2012, 48(3): 114-115. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201203037.htm
He P H, Gong Z X. Determination of trace molybdenum in ore by flame atomic absorption spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(3): 114-115. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201203037.htm
[13] 张卓佳, 周智勇, 谢磊. EDTA滴定法测定高铋银精矿中铋[J]. 冶金分析, 2020, 40(4): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202004017.htm
Zhang Z J, Zhou Z Y, Xie L. Determination of bismuth in bismuth-riched silver concentrate by EDTA titration[J]. Metallurgical Analysis, 2020, 40(4): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202004017.htm
[14] 徐智娟. 硫脲分光光度法测定钨钼矿中的铋量[J]. 广东化工, 2019, 46(3): 208-209. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201907096.htm
Xu Z J. Thiourea spectrophotometric determination of bismuth content in tungsten molybdenum ore[J]. Guangzhou Chemical Industry, 2019, 46(3): 208-209. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201907096.htm
[15] Ostojic G, Lazic D, Zeljkovic S. Determination of the iron oxide content in bauxite: Comparing ICP-OES with UV-Vis and volumetric analysis[J]. Chemical Papers, 2020, https://doi.org/10.1007/s11696-020-01305-z. doi: 10.1007/s11696-020-01305-z
[16] Padmasubashini V, Sunilkumar B, Krishnakumar M, et al. A comparative study of the principal approaches for the estimation of measurement uncertainty for the ICP-OES determinationof the light rare earth elements, yttrium and uranium in rock samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, https://doi.org/10.1007/s10967-020-07214-5. doi: 10.1007/s10967-020-07214-5
[17] Padmasubashini V, Hanuman V V, Singh S B, et al. Evaluation of standard measurement uncertainty from method validation data for the ICP-OES determination of Nb, Ta, Fe, Mn, Ti, Sn, Zr, and winniobite-tantalite samples[J]. Atomic Spetroscopy, 2019, 40(5): 179-187. doi: 10.46770/AS.2019.05.005
[18] Koesmawati T A, Tanuwidjaja S, Nurachman A, et al. Method validation of As, Cd, Cr, Cu, Mn, Ni, Se, and Zn metals in citarum river sediment using inductively coupled plasma-optical emission spectroscopy (ICP-OES)[J]. Journal of Physics: Conference Series, 2021, doi: 10.1088/1742-6596/1764/1/012030.
[19] Li X Z, Xiong C H, Sun K, et al. Optimization of ICP-OES parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 2021, doi. org/10.1007/s40042-021-00093-3. doi: 10.1007/s40042-021-00093-3
[20] 肖芳, 倪文山, 毛香菊, 等. 碱熔-共沉淀富集分离-电感耦合等离子体原子发射光谱法测定矾钛磁铁矿中痕量钪[J]. 冶金分析, 2021, 41(3): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103011.htm
Xiao F, Ni W S, Mao X J, et al. Determination of trace scandium in vanadium-titanium magnetite by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and co-precipitation enrichment separation[J]. Metallurgical Analysis, 2021, 41(3): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103011.htm
[21] 严慧, 王干珍, 汤行, 等. 电感耦合等离子体发射光谱法同时测定锑矿石中14种元素的含量[J]. 理化检验(化学分册), 2017, 53(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201701008.htm
Yan H, Wang G Z, Tang X, et al. Simultaneous determination of 14 elements in antimony ore by inductively coupled plasma-optical emission spectro-metry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201701008.htm
[22] 王力强, 王家松, 吴良英, 等. 偏硼酸锂熔融-电感耦合等离子体原子发射光谱法测定锆矿石中10种元素[J]. 冶金分析, 2020, 40(9): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009015.htm
Wang L Q, Wang J S, Wu L Y, et al. Determination of ten elements in zirconium ores by lithium metaborate fusion-inductively coupled plasma atomic emission spectro-metry[J]. Metallurgical Analysis, 2020, 40(9): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009015.htm
[23] 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
[24] 王干珍, 汤行, 叶明, 等. 电感耦合等离子体原子发射光谱法测定含碳质钒矿石中硅铝铁钒磷[J]. 冶金分析, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
Wang G Z, Tang X, Ye M, et al. Determination of silicon, aluminum, iron, vanadium and phosphorous in carbon-bearing vanadium ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
[25] 王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等7种主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.008
Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectro-metry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.008
[26] 马海萍, 马玲, 黄勤. 电杆耦合等离子体原子发射光谱法在铋矿石化学物相分析中的应用[J]. 理化检验(化学分册), 2019, 55(12): 1412-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201912011.htm
Ma H P, Ma L, Huang Q. Application in the phase analysis of bismuth ores by inductively coupled plasma atomic emission spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(12): 1412-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201912011.htm
[27] 林学辉, 辛文彩, 徐磊. 过氧化钠熔融-电感耦合等离子体发射光谱法快速测定稀散元素矿石中高含量[J]. 分析试验室, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm
Lin X H, Xin W C, Xu L. Rapid determination of tungsten in scattered elements mineral by ICP-AES with sodium peroxide alkali fusion[J]. Chinese Journal of Analysis Laboratory, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm
[28] 成勇, 刘力维, 袁金红, 等. 碱熔-电感耦合等离子体原子发射光谱法测定矾渣中钒硅钙镁铝锰铬钛磷[J]. 冶金分析, 2021, 41(4): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104011.htm
Cheng Y, Liu L W, Yuan J H, et al. Determination of vanadium, silicon, calcium, magnesium, aluminum, manganese, chromium, titanium and phosphorous in vanadium slag by inductively coupled plasma atomic emission spectrometry after alkali fusion[J]. Metallurgical Analysis, 2021, 41(4): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104011.htm
[29] 姚钟威, 田学成, 罗义威, 等. 萤石矿中低品位铍的测定[J]. 湿法冶金, 2021, 40(2): 174-177. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GJTL202010001063.htm
Yao Z W, Tian X C, Luo Y W, et al. Determination of low grade beryllium in fluorite ore[J]. Hydrometallurgy of China, 2021, 40(2): 174-177. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GJTL202010001063.htm
[30] 郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906110084
Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906110084
[31] 王越, 孙景晓, 王现杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定铁矿石中硅和磷[J]. 冶金分析, 2021, 41(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202102008.htm
Wang Y, Sun J X, Wang X J, et al. Determination of silicon and phosphorous in iron ore by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202102008.htm
[32] 冯晓军, 薛菁, 杨晓燕, 等. 电感耦合等离子体原子发射光谱法测定云南昆阳磷矿黑色页岩中钒钼镍[J]. 冶金分析, 2018, 38(9): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809010.htm
Feng X J, Xue Q, Yang X Y, et al. Determination of vanadium, molybdenum and nicked in black shale of Kunyang phosphate mine in Yunnan by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809010.htm
[33] 黎香荣, 陈永欣, 刘顺琼, 等. 电感耦合等离子体原子发射光谱法测定多金属矿中主次量元素[J]. 冶金分析, 2012, 32(8): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201208010.htm
Li X R, Chen Y X, Liu S Q, et al. Determination of major and minor elements in polymetallic ore by inductively coupled plasma atomic emission spectrometric method[J]. Metallurgical Analysis, 2012, 32(8): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201208010.htm
[34] 李志伟, 赵晓亮, 李珍, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594-600. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701030001
Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantaluman dissociated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594-600. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701030001
[35] 王佳翰, 汤凯, 龙军桥, 等. 敞开消解-ICP-OES同时测定地球化学样品中硫、磷、砷、硼[J]. 化学试剂, 2018, 40(1): 53-56, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201801013.htm
Wang J H, Tang K, Long J Q, et al. Simultaneous determination of sulfur, phosphorus, arsenic and boron in geochemical samples by ICP-OES with open digestion[J]. Chemical Reagents, 2018, 40(1): 53-56, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201801013.htm
[36] 薛宁. 电感耦合等离子体原子发射光谱法测定萤石中11种元素[J]. 冶金分析, 2021, 41(3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103013.htm
Xue N. Determination of eleven elements in fluorite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103013.htm
[37] 张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pd, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
[38] 刘正红, 高振广, 陈永红, 等. 电感耦合等离子体原子发射光谱法测定矿石中的钼钨[J]. 黄金, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm
Liu Z H, Gao Z G, Chen Y H, et al. Determination of molybdenmum and tungsten in ores by inductively coupled plasma atomic emission spectrometry[J]. Gold, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm
[39] 陈思成. 电感耦合等离子体发射光谱法同时测定钨矿石中的铜、铅、锌、钼和三氧化钨[J]. 湖南有色金属, 2018, 34(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201805022.htm
Chen S C. Determination of Cu, Pd, Zn, Mo, WO3 in tungsten ore by inductively coupled plasma-optical emission spectrometer[J]. Hunan Nonferrous Metals, 2018, 34(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201805022.htm
[40] 张金矿, 于亚辉, 陈浩凤, 等. 密闭消解-ICP-MS法测定地质样品中的痕量铑和铱[J]. 贵金属, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm
Zhang J K, Yu Y H, Chen H F, et al. Sealed digestion and ICP-MS determination of trace Rh and Ir in geological samples[J]. Precious Metals, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm
[41] 战大川, 阳国运, 武明丽, 等. 电感耦合等离子体原子发射光谱法测定铌和钽[J]. 冶金分析, 2020, 40(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202005014.htm
Zhan D C, Yang G Y, Wu M L, et al. Determination of niobium and tantalum in niobium-tantalum concentrate by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2020, 40(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202005014.htm