U-Pb Isotopic Dating of Monazite in Granite from the Changjiang Uranium Orefield, Northern Guangdong Province and Its Geological Significance
-
摘要:
长江铀矿田位于诸广山复式岩体中南部,是典型的花岗岩型铀矿田。前人采用锆石U-Pb定年方法对赋矿花岗岩进行了年代学研究,但由于全岩和锆石铀含量较高,锆石往往发生了蜕晶化,可能导致锆石U-Pb定年数据散乱,影响锆石U-Pb年龄的可靠性。独居石是花岗岩中广泛存在的含铀副矿物,铀和钍含量均较高,可达10000×10-6,普通铅含量低,约100×10-6~1000×10-6,是开展U-Pb定年的理想矿物。本文对长江铀矿田赋矿花岗岩中的独居石开展了激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)U-Pb定年,分别选用独居石标准物质USGS44069和Trebilcock作为外部标样和监控标样,结果显示油洞岩体的独居石U-Pb年龄为228.0±1.5Ma(MSWD=0.82,n=23),长江岩体的独居石U-Pb年龄为156.8±1.7Ma(MSWD=0.76,n=14),与SHRIMP锆石年龄在误差范围内一致(分别为232±4Ma和160±2Ma),进一步证实了油洞岩体为印支晚期岩浆活动的产物,长江岩体为燕山早期岩浆活动的产物。因此,本研究认为高铀花岗岩中独居石U-Pb年龄可以有效地约束其成岩时代。
-
关键词:
- 独居石U-Pb定年 /
- 激光剥蚀电感耦合等离子体质谱法 /
- 油洞岩体 /
- 长江岩体 /
- 长江铀矿田
Abstract:BACKGROUND The Changjiang uranium ore field in the southern margin of the Zhuguangshan complex pluton is a typical granite-type uranium ore field in China. Zircon U-Pb dating has been used to date ore-bearing granites. However, due to the high content of uranium in the whole rock and zircon mineral, some zircons tend to be decrystallized, which may lead to scattered zircon U-Pb data and may affect the reliability of zircon U-Pb dating. Monazite is a widespread accessory mineral in granite, and it is an ideal mineral for U-Pb dating due to its high U and Th contents (up to 10000×10-6), and low common Pb content of about 100×10-6-1000×10-6.
OBJECTIVES In order to constrain the age of the ore-bearing granite and discuss the tectonic setting.
METHODS LA-ICP-MS U-Pb dating method was used to constrain the formation age of monazite from the Youdong and Changjiang plutons. The monazite standard materials USGS44069 and Trebilcock were selected as external standard samples and monitoring standard samples, respectively.
RESULTS The 206Pb/238U age of monazite in the Youdong pluton is 228.0±1.5Ma (MSWD=0.82, n=23), and that of monazite in the Changjiang pluton is 156.8±1.7Ma (MSWD=0.76, n=14). These ages are consistent with the SHRIMP zircon ages of 232±4Ma and 160±2Ma, respectively, which further confirms that the Youdong pluton is the product of Late Indosinian magmatism, and the Yangtze River pluton is the product of early Yanshanian magmatism.
CONCLUSIONS This study demonstrates that the U-Pb age of monazite in high-uranium granites can effectively constrain their formation age.
-
-
表 1 LA-ICP-MS独居石U-Pb定年数据
Table 1. Ages of LA-ICP-MS U-Pb dating of monazite
样品CJ1702-2:油洞岩体 测点 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 同位素比值 2σ 同位素比值 2σ 同位素比值 2σ 年龄(Ma) 2σ 年龄(Ma) 2σ CJ1702-2-01 0.0516 0.0016 0.2590 0.0062 0.0364 0.0003 233.9 9.0 230.7 7.2 CJ1702-2-02 0.0531 0.0016 0.2673 0.0063 0.0365 0.0003 240.5 9.2 231.0 7.2 CJ1702-2-03 0.0516 0.0046 0.2563 0.0174 0.0360 0.0005 231.7 17.2 228.2 7.4 CJ1702-2-04 0.0511 0.0016 0.2551 0.0064 0.0362 0.0003 230.7 9.0 229.3 7.1 CJ1702-2-05 0.0491 0.0029 0.2420 0.0109 0.0357 0.0004 220.0 11.9 226.4 7.3 CJ1702-2-06 0.0523 0.0030 0.2534 0.0111 0.0352 0.0004 229.3 12.2 222.7 7.1 CJ1702-2-07 0.0510 0.0023 0.2531 0.0090 0.0360 0.0004 229.1 10.7 228.0 7.3 CJ1702-2-08 0.0523 0.0023 0.2581 0.0086 0.0358 0.0003 233.2 10.4 226.9 7.1 CJ1702-2-09 0.0512 0.0029 0.2560 0.0112 0.0363 0.0004 231.4 12.2 229.7 7.4 CJ1702-2-10 0.0522 0.0040 0.2584 0.0152 0.0359 0.0005 233.4 15.4 227.5 7.6 CJ1702-2-11 0.0524 0.0023 0.2592 0.0088 0.0359 0.0003 234.0 10.6 227.3 7.1 CJ1702-2-12 0.0505 0.0027 0.2528 0.0101 0.0363 0.0003 228.8 11.4 229.8 7.2 CJ1702-2-13 0.0518 0.0016 0.2585 0.0064 0.0362 0.0003 233.5 9.1 229.1 7.1 CJ1702-2-14 0.0498 0.0026 0.2511 0.0098 0.0365 0.0003 227.4 11.2 231.3 7.3 CJ1702-2-16 0.0519 0.0050 0.2633 0.0194 0.0368 0.0006 237.3 18.8 232.9 8.0 CJ1702-2-20 0.0518 0.0039 0.2544 0.0146 0.0356 0.0004 230.1 14.9 225.7 7.3 CJ1702-2-21 0.0526 0.0019 0.2561 0.0071 0.0353 0.0003 231.5 9.5 223.6 7.0 CJ1702-2-22 0.0545 0.0030 0.2666 0.0116 0.0355 0.0005 239.9 12.7 224.7 7.5 CJ1702-2-25 0.0520 0.0028 0.2619 0.0108 0.0365 0.0005 236.2 12.1 231.1 7.5 CJ1702-2-26 0.0496 0.0022 0.2380 0.0081 0.0348 0.0003 216.8 9.8 220.7 6.9 CJ1702-2-27 0.0503 0.0021 0.2494 0.0081 0.0360 0.0003 226.1 10.0 227.7 7.2 CJ1702-2-28 0.0537 0.0028 0.2746 0.0112 0.0371 0.0004 246.4 12.5 234.6 7.5 CJ1702-2-30 0.0498 0.0018 0.2480 0.0071 0.0361 0.0003 225.0 9.4 228.7 7.2 样品CJ1607:长江岩体 测点 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 同位素比值 2σ 同位素比值 2σ 同位素比值 2σ 年龄(Ma) 2σ 年龄(Ma) 2σ CJ1607-01 0.0419 0.0051 0.1484 0.0150 0.0257 0.0006 140.5 14.8 163.6 6.4 CJ1607-02 0.0526 0.0059 0.1756 0.0166 0.0242 0.0007 164.3 16.3 154.3 6.2 CJ1607-03 0.0412 0.0054 0.1427 0.0154 0.0251 0.0007 135.5 15.2 160.0 6.4 CJ1607-05 0.0506 0.0070 0.1767 0.0206 0.0253 0.0009 165.2 19.9 161.1 7.5 CJ1607-06 0.0409 0.0063 0.1370 0.0174 0.0243 0.0006 130.4 17.0 154.7 6.2 CJ1607-07 0.0494 0.0053 0.1649 0.0149 0.0242 0.0006 155.0 14.8 154.2 6.2 CJ1607-08 0.0552 0.0058 0.1854 0.0161 0.0243 0.0006 172.7 15.9 155.0 5.9 CJ1607-09 0.0436 0.0055 0.1491 0.0155 0.0248 0.0007 141.1 15.3 158.0 6.5 CJ1607-10 0.0467 0.0060 0.1589 0.0169 0.0247 0.0007 149.8 16.5 157.2 6.4 CJ1607-11 0.0501 0.0062 0.1694 0.0174 0.0245 0.0007 158.9 17.0 156.2 6.4 CJ1607-12 0.0539 0.0078 0.1800 0.0216 0.0242 0.0007 168.1 20.8 154.4 6.6 CJ1607-13 0.0748 0.0081 0.2527 0.0228 0.0245 0.0006 228.8 21.7 156.0 6.0 CJ1607-14 0.0601 0.0069 0.2028 0.0194 0.0245 0.0006 187.5 18.8 155.9 6.2 CJ1607-15 0.0505 0.0065 0.1710 0.0182 0.0246 0.0007 160.3 17.7 156.5 6.3 -
[1] 黄国龙, 刘鑫扬, 孙立强, 等. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报, 2014, 88(5): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405003.htm
Huang G L, Liu X Y, Sun L Q, et al. Zircon U-Pb dating, geochemical characteristics and genesis of the Changjiang granite in northern Guangdong[J]. Acta Geologica Sinica, 2014, 88(5): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405003.htm
[2] Yang T J, Sun X M, Shi G Y, et al. LA-ICP-MS U-Pb dating of cenozoic rutile inclusions in the Yuanjiang marble-hosted ruby deposit, Ailao Shan Complex, Southwest China[J]. Minerals, 2021, 11(4): 1-9.
[3] 骆金诚, 石少华, 陈佑纬, 等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm
Luo J C, Shi S H, Chen Y W, et al. Review on dating of uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(2): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm
[4] 胡国辉, 张琪琪, 李建锋, 等. 辽东地区中生代花岗岩的侵位时代: 锆石和独居石U-Pb年代学[J]. 地球科学, 2020, 45(11): 3962-3981. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011006.htm
Hu G H, Zhang Q Q, Li J F, et al. Emplacement ages of Mesozoic granites in Liaodong area: Constraints from zircon and monazite U-Pb dating[J]. Earth Science, 2020, 45(11): 3962-3981. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011006.htm
[5] 宓奎峰, 杨艳, 颜廷杰, 等. 内蒙古沙麦钨矿区高分异花岗岩独居石U-Pb定年及成矿意义[J]. 现代地质, 2020, 34(3): 504-513. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202003008.htm
Mi K F, Yang Y, Yan T J, et al. In-situ monazite U-Pb geochronology of highly fractionated granites in Shamai tungsten deposit, Inner Mongolia and its mineralization significance[J]. Geoscience, 2020, 34(3): 504-513. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202003008.htm
[6] 叶亚康, 周家云, 周雄. 川西塔公松林口岩体LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩矿测试, 2020, 39(6): 921-933. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060008
Ye Y K, Zhou J Y, Zhou X. Zircon LA-ICP-MS U-Pb age and geochemical features of the Songlinkou pluton, western Sichuan[J]. Rock and Mineral Analysis, 2020, 39(6): 921-933. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060008
[7] 叶海敏, 张翔, 朱云鹤. 江西石门寺钨多金属矿床花岗岩独居石U-Pb精确定年及地质意义[J]. 大地构造与成矿学, 2016, 40(1): 58-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601006.htm
Ye H M, Zhang X, Zhu Y H. In-situ monazite U-Pb geochronology of granites in Shimensi tungsten polymetallic deposit, Jiangxi Province and its geological significance[J]. Geotectonica et Metallogenia, 2016, 40(1): 58-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601006.htm
[8] 陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1-35, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm
Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decade (2011-2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1-35, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm
[9] 张聪, 刘晓瑜, 杨经绥, 等. 柴北缘超高压变质带的新元古代变质作用——来自锡铁山副片麻岩的岩石学及独居石年代学证据[J]. 岩石学报, 2016, 32(12): 3715-3728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612011.htm
Zhang C, Liu X Y, Yang J S, et al. The Neoproterozoic metamorphism of North Qaidam UHPM belt, western China: Constrain from petrological study and monazite dating of paragneiss[J]. Acta Petrologica Sinica, 2016, 32(12): 3715-3728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612011.htm
[10] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 1077-1094, 1064, 1066. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
Wu L G, Li X H. Isotopic and elemental microanalyses of monazite and its geological application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1077-1094, 1064, 1066. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
[11] Harrison T M, Catlos E J, Montel J M. U-Th-Pb dating of phosphate minerals[J]. Reviews in Mineralogy Geochemistry-Exploration Environment Analysis, 2002, 48(1): 524-558. https://www.researchgate.net/publication/236660479_U-Th-Pb_Dating_of_Phosphate_Minerals
[12] 胡欢, 王汝成, 邵春景, 等. 基于独居石标样Trebilcock的激光剥蚀等离子体质谱微区原位U-Th-Pb同位素定年方法[J]. 南京大学学报(自然科学版), 2020, 56(6): 763-773. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202006001.htm
Hu H, Wang R C, Shao C J, et al. In situ LA-ICP-MS U-Th-Pb isotopic dating of monazite based on the monazite standard Trebilcock[J]. Journal of Nanjing University (Natural Science), 2020, 56(6): 763-773. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202006001.htm
[13] 唐文龙, 付超, 邹健, 等. 胶东唐家沟金矿床独居石LA-ICP-MS U-Pb同位素年代学及其地质意义[J]. 地质学报, 2021, 95(3): 809-821. doi: 10.3969/j.issn.0001-5717.2021.03.014
Tang W L, Fu C, Zou J, et al. LA-ICP-MS U-Pb isotopic chronology of monazite from Tangjiagou gold deposit in Jiaodong and its geological significance[J]. Acta Geological Sinica, 2021, 95(3): 809-821. doi: 10.3969/j.issn.0001-5717.2021.03.014
[14] 邓平, 任纪舜, 凌洪飞, 等. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评, 2011, 57(6): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106011.htm
Deng P, Ren J S, Ling H F, et al. Yanshanian granite batholiths of southern Zhuguang Mountian: SHRIMP zircon U-Pb dating and tectonic implications[J]. Geological Review, 2011, 57(6): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106011.htm
[15] 傅丽雯. 粤北302铀矿床围岩蚀变分带、成矿流体与成矿物质来源研究[D]. 南京: 南京大学, 2015: 1-78.
Fu L W. Study on wall rock alteration zoning, the source of ore-forming fluid and ore-forming maternal of the 302 uranium deposit in northern Guangdong Province[D]. Nanjing: Nanjing University, 2015: 1-78.
[16] 朱捌. 地幔流体与铀成矿作用研究——以诸广山南部铀矿田为例[D]. 成都: 成都理工大学, 2010.
Zhu B. The study of mantle liquid and uranium metallogenesis-Take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology, 2010.
[17] 胡瑞忠, 骆金诚, 陈佑纬, 等. 华南铀矿床研究若干进展[J]. 岩石学报, 2019, 35(9): 2625-2636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909001.htm
Hu R Z, Luo J C, Chen Y W, et al. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 2019, 35(9): 2625-2636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909001.htm
[18] 骆金诚, 石少华, 陈佑纬, 等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm
Luo J C, Shi S H, Chen Y W, et al. Review on dating of uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(2): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm
[19] 黄国龙, 曹豪杰, 凌洪飞, 等. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报, 2012, 86(4): 577-586. doi: 10.3969/j.issn.0001-5717.2012.04.004
Huang G L, Cao H J, Ling H F, et al. Zircon SHRIMP U-Pb age, geochemistry and genesis of the Youdong Granite in northern Guangdong[J]. Acta Geologica Sinica, 2012, 86(4): 577-586. doi: 10.3969/j.issn.0001-5717.2012.04.004
[20] 张龙, 陈振宇, 李胜荣, 等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9): 2657-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809010.htm
Zhang L, Chen Z Y, Li S R, et al. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China[J]. Acta Petrologica Sinica, 2018, 34(9): 2657-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809010.htm
[21] 吴德海, 夏菲, 潘家永, 等. 粤北棉花坑铀矿床热液蚀变与物质迁移研究[J]. 岩石学报, 2019, 35(9): 2745-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909008.htm
Wu D H, Xia F, Pan J Y, et al. Hydrothermal alteration and material migration of Mianhuakeng uranium deposit in northern Guangdong[J]. Acta Petrologica Sinica, 2019, 35(9): 2745-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909008.htm
[22] 钟福军. 华南花岗岩型铀矿成岩成矿作用研究——以粤北长江铀矿田为例[D]. 南昌: 东华理工大学, 2018.
Zhong F J. Petrogenesis and mineralization of granite type uranium deposits in South China: A case study of the Changjiang uranium ore field in northern Guangdong Province[D]. Nanchang: East China University of Technology, 2018.
[23] 钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
Zhong F J, Yan J, Xia F, et al. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China: Implications for uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
[24] 张伟盟, 严杰, 钟福军, 等. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究[J]. 岩矿测试, 2019, 38(4): 449-460. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901160007
Zhang W M, Yan J, Zhong F J, et al. In situ LA-ICP-MS U-Pb dating of uraninite from the Shijiaowei granite-type uranium deposit, northern Guangdong Province[J]. Rock and Mineral Analysis, 2019, 38(4): 449-460. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901160007
[25] 张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
Zhang L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite, northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
[26] 刘军港, 李子颖, 聂江涛, 等. 诸广南长江铀矿田油洞断裂性质及其找矿意义研究[J]. 铀矿地质, 2019, 35(4): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201904002.htm
Liu J G, Li Z Y, Nie J T, et al. Study on structural properties and prospecting significance of Youdong fault in Changjiang uranium orefield, South Zhuguang[J]. Uranium Geology, 35(4): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201904002.htm
[27] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
[28] 胡国辉, 周艳艳, 张拴宏, 等. 吕梁地区古元古代花岗片麻岩成因及变质时代: 锆石和独居石U-Pb年龄及锆石Hf同位素证据[J]. 岩石学报, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05
Hu G H, Zhou Y Y, Zhang S H, et al. Petrogenesis and metamorphic age of Palaeoproterozoic granitic gneisses in Lvliang area: Constraints from zircon and monazite U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05
[29] Tian Z J. Uranium-bearing and barren granites from the Zhuguang Mountain: Geochronology, element geochemistry, mineralogy comparison[M]. Beijing: China University of Geosciences (Beijing), 2014: 1-103.
[30] 肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120129
Xiao Z B, Geng J Z, Tu J R, et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120129
[31] Ling X X, Huyskens M H, Li Q L, et al. Mineralogy and petrology; Recent research from Chinese Academy of Sciences highlight findings in mineralogy and petrology (Monazite RW-1: A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis)[J]. Resource Week, 2017, 111(2): 163-172.
[32] 张龙. 粤北诸广山复式岩体的铀矿物研究[D]. 北京: 中国地质大学(北京), 2016: 1-125.
Zhang L. Study on uranium minerals of Zhuguangshan complex pluton, northern Guangdong[D]. Beijing: China University of Geosciences (Beijing), 2016: 1-125.
[33] 罗强, 许幼, 伏顺成, 等. 诸广长江矿田铀矿地质特征及找矿潜力[J]. 矿产勘查, 2020, 11(2): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202002012.htm
Luo Q, Xu Y, Fu S C, et al. Uranium metallogenic geological characteristics and prospecting potential in Zhuguang Changjiang orefield[J]. Mineral Exploration, 2020, 11(2): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202002012.htm
[34] 张万良. 中国主要铀矿类型、特点及其空间分布[J]. 地质找矿论丛, 2017, 32(4): 526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201704002.htm
Zhang W L. The main types and characteristics and spatial distribution of uranium deposits in China[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(4): 526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201704002.htm
[35] 林锦荣, 李子颖, 胡志华, 等. 热液型铀矿空间定位的控制因素[J]. 铀矿地质, 2016, 32(6): 333-339. doi: 10.3969/j.issn.1000-0658.2016.06.002
Lin J R, Li Z Y, Hu Z H, et al. Controlling factors for the spatial positioning of hydrothermal uranium orefield[J]. Uranium Geology, 2016, 32(6): 333-339. doi: 10.3969/j.issn.1000-0658.2016.06.002
-