Determination of Tin, Lead and Zinc in a Tin-Lead-Zinc Deposit in Xianghualing Mining Area, Hunan Province by Inductively Coupled Plasma-Optical Emission Spectrometry with Alkali Fusion
-
摘要:
湖南香花岭矿区是南岭地区东西向构造-岩浆-成矿带的重要组成部分,矿区内成矿地质条件非常优越,以矿床类型多、矿产种类复杂而著称,其中锡铅锌矿床是该矿区南岭成矿带非常重要的多金属矿床,赋存的矿石类型主要以锡石-硫化物型锡矿石、锡铅锌矿石、硫化物型铅锌矿石为主,为了进一步研究区域成矿条件、矿床地质特征、元素赋存状态及有色金属矿产综合利用,准确测定锡、铅、锌有色金属元素的含量非常必要。湖南香花岭矿区锡铅锌矿床中锡、铅、锌元素的平均品位都为百分含量,且锡本身是一种难分解元素,因此,常规的酸溶很难将高含量的锡、铅、锌元素分解完全。针对香花岭矿区锡铅锌矿床样品的特殊性,本文建立了碱熔-电感耦合等离子体发射光谱同时测定湖南香花岭矿区锡铅锌矿床中锡铅锌的分析方法:①优化了碱熔试剂选择、试剂用量、碱熔温度、碱熔时间等实验前处理及等离子体激发条件、元素谱线、扣背景位置等仪器测定条件,在比较氢氧化钠、无水碳酸钠和过氧化钠3种熔剂对分析结果影响的基础上,选择以4.0g过氧化钠作为熔剂,在750℃下恒温熔融试样20min,约30mL沸水浸提后加入20mL浓盐酸酸化,保证样品分解完全;②以空白碱熔酸化溶液为介质配制校准系列,使得校准系列与试样基体匹配,消除了基体干扰影响。③采用国家一级地球化学标准物质进行方法质量评估,结果表明标准物质测定值与标准值的对数差值的绝对值(Δlgw) < 0.04,锡、铅、锌的方法检出限分别为13.60、36.45、53.83μg/g,方法精密度(RSD)均优于8%,校准曲线测定范围为0~100μg/mL。由于采用碱熔方法和以空白碱熔酸化溶液作为标准配制介质,使得该方法适用于锡石-硫化物型锡矿石、锡铅锌矿石、硫化物型铅锌矿石中高含量锡铅锌测定。
Abstract:BACKGROUND The Xianghualing mining area in Hunan Province is an important part of the east-west tectonic-magmatic-metallogenic belt in the Nanling area.The ore-forming geological conditions in the mining area are superior, and it is famous for its many types of deposits and complex types of minerals.The tin-lead-zinc deposit in the Xianghualing mining area is a very important polymetallic deposit in the Nanling metallogenic belt.The ore types are mainly cassiterite sulfide tin ore, tin-lead-zinc ore and sulfide lead-zinc ore.Tin, lead and zinc are very important nonferrous metal elements.The abundance and variation characteristics of these three elements can reflect the regional metallogenic conditions, indicate the existence of deposits or mineralization, and are the important basis for studying the metallogenic model, deepening the understanding of the genesis of the deposit, and identifying the metallogenic control factors.Therefore, it is very necessary to accurately determine the content of tin, lead and zinc in the tin, lead and zinc deposits in the Xianghualing mining area, and it is important to study the regional metallogenic conditions The geological characteristics of the deposit, the occurrence state of elements, mineral processing and comprehensive utilization of non-ferrous metal minerals are of great significance.However, the average grades of tin, lead and zinc in the deposit are percentage contents and tin itself is a refractory element.Conventional open acid dissolution or closed acid dissolution in the dissolution of high content of tin, lead and zinc in the ore will have the disadvantages of incomplete digestion and easy precipitation of the solution, resulting in serious low determination results.However, alkali fusion is more capable of decomposing minerals than acid dissolution.As long as the appropriate alkali fusion reagent, temperature and time are optimized, some high content of inorganic elements, even insoluble elements, can be completely decomposed, which is an ideal method of mineral decomposition pretreatment.
OBJECTIVES To rapidly and accurately determine the concentrations of tin, lead and zinc in high contents of tin, lead and zinc samples of a tin-lead-zinc deposit in the Xianghualing mining area, Hunan Province.
METHODS Inductively coupled plasma-optical emission spectrometry (ICP-OES) with alkali fusion was used to determine the levels of tin, lead and zinc.The selection of alkali fusion reagent, reagent dosage, alkali fusion temperature and time as well as the plasma excitation conditions, element spectral lines, button background position and other instrumental determination conditions were optimized.The effects of three kinds of fluxes: sodium hydroxide, anhydrous sodium carbonate and sodium peroxide were compared.
RESULTS The measured value of tin was greatly affected by the alkali flux.Under the flux of sodium hydroxide or anhydrous sodium carbonate, the measured value of tin was low, while the measured value of tin was consistent with the standard value under the flux of sodium peroxide.Based on the comparison of the effects of various fluxes on the analysis results, sodium peroxide was selected as the flux, melting at a constant temperature of 750℃ for 20 minutes, and acidification with 20mL of hydrochloric acid after 30mL of boiling water extraction to ensure the complete decomposition of the sample.The calibration series was prepared with blank alkali melt solution as the medium, so that the calibration series matched the sample matrix and eliminated the influence of matrix interference.The national first-class geochemical reference materials were used for method quality evaluation, and the results showed that the absolute value of the logarithmic difference between the measured value and the certified value of the reference material was less than 0.04.The detection limits of the method for tin, lead and zinc were 13.60μg/g, 36.45μg/g and 53.83μg/g, respectively.The precision of the method was better than 8%.The determination range of the calibration curve was between 0 to 100μg/mL.
CONCLUSIONS Due to the use of alkali fusion method and blank alkali fusion solution as the standard preparation medium, this method is suitable for the determination of high contents of tin, lead and zinc in cassiterite-sulfide type tin ores, tin-lead-zinc ores, and sulfide type lead-zinc ores, and it has good application prospects.At present, this method has been successfully applied to the analysis of actual samples in the Xianghualing mining area, Hunan Province, with satisfactory results.
-
Key words:
- alkali fusion /
- inductively coupled plasma-optical emission spectrometry /
- Xianghualing /
- tin-lead-zinc deposits /
- tin /
- lead /
- zinc
-
表 1 锡、铅、锌元素分析谱线及扣背景位置
Table 1. Analysis spectral line and buckle background position of tin, lead and zinc elements
元素 分析线波长
(nm)谱线级次 扣背景位置 Sn 189.989 477 左、右 Pb 220.353 153 左、右 Zn 213.856 458 左、右 表 2 氢氧化钠、无水碳酸钠、过氧化钠熔剂对测定结果的影响
Table 2. Effect of alkali fluxes such as sodium hydroxide, anhydrous sodium carbonate and sodium peroxide on the results
标准物质编号 矿石类型 Sn含量(%) Pb含量(%) Zn含量(%) 碱熔试剂 标准值 测定值 标准值 测定值 标准值 测定值 GBW07240 钨矿石 0.14±0.03 0.099 0.26±0.01 0.26 0.29±0.02 0.28 氢氧化钠 GBW07282 锡矿石 1.27±0.01 0.794 2.82±0.06 2.72 0.91±0.03 0.90 GBW07281 锡矿石 4.47±0.10 2.79 2.72±0.07 2.69 0.74±0.03 0.74 GBW07240 钨矿石 0.14±0.03 0.082 0.26±0.01 0.25 0.29±0.02 0.27 无水碳酸钠 GBW07282 锡矿石 1.27±0.01 0.635 2.82±0.06 2.76 0.91±0.03 0.89 GBW07281 锡矿石 4.47±0.10 2.14 2.72±0.07 2.68 0.74±0.03 0.71 GBW07240 钨矿石 0.14±0.03 0.14 0.26±0.01 0.26 0.29±0.02 0.29 过氧化钠 GBW07282 锡矿石 1.27±0.01 1.27 2.82±0.06 2.81 0.91±0.03 0.90 GBW07281 锡矿石 4.47±0.10 4.44 2.72±0.07 2.70 0.74±0.03 0.73 表 3 空白碱熔酸化介质和去离子水介质的分析比对结果
Table 3. Analysis and comparison results of blank alkali fusion acidification medium and deionized water medium
标准物质编号 元素 标准值(%) 空白碱熔酸化介质 去离子水介质 测定值(%) 相对误差(%) 测定值(%) 相对误差(%) Sn 0.14±0.03 0.15 7.14 0.097 -30.71 GBW07240 Pb 0.26±0.01 0.25 -3.85 0.19 -26.92 Zn 0.29±0.02 0.29 1.38 0.23 -20.69 Sn 1.27±0.01 1.24 -2.36 0.96 -24.41 GBW07282 Pb 2.82±0.06 2.86 1.42 1.98 -29.79 Zn 0.91±0.03 0.90 -1.10 0.74 -18.68 Sn 4.47±0.10 4.53 1.34 3.20 -28.41 GBW07281 Pb 2.72±0.07 2.64 -2.94 2.11 -22.43 Zn 0.74±0.03 0.72 -2.70 0.59 -20.27 表 4 方法精密度
Table 4. Precision tests of the method
标准物质
编号Sn Pb Zn 测定值
(%)RSD
(%)测定值
(%)RSD
(%)测定值
(%)RSD
(%)GBW07240 0.144 5.4 0.261 4.6 0.283 4.5 GBW07282 1.24 3.1 2.80 2.9 0.908 3.4 GBW07281 4.45 1.7 2.68 2.9 0.742 3.5 表 5 方法准确度
Table 5. Accuracy tests of the method
元素 项目 GBW07240 GBW07282 GBW07281 GBW07163 GBW07286 GBW07287 GBW(E)070080 GBW07231 标准值(%) 0.14±0.03 1.27±0.01 4.47±0.10 (0.002) 0.0008±0.0001 (0.00017) - 45.80±0.005 Sn 平均值(%) 0.15 1.23 4.41 - - - - 45.38 Δlgw 0.02 0.01 0.01 - - - - 0.00 标准值(%) 0.26±0.01 2.82±0.06 2.72±0.07 2.17±0.07 1.27±0.07 3.38±0.10 22.96±0.09 2.89±0.03 Pb 平均值(%) 0.27 2.86 2.75 2.11 1.22 3.31 22.73 2.76 Δlgw 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.02 标准值(%) 0.29±0.02 0.91±0.03 0.74±0.03 4.26±0.15 2.51±0.05 6.20±0.16 16.22±0.06 0.264±0.004 Zn 平均值(%) 0.31 0.94 0.75 4.23 2.52 6.25 16.29 0.259 Δlgw 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.01 表 6 样品分析结果
Table 6. Analytical results of the samples
样品编号 岩性 Sn含量测定值(%) Pb含量测定值(%) Zn含量测定值(%) 21LZL-05 伟晶岩 0.45 2.09 0.32 21LZL-08 黑云母花岗岩 0.17 0.58 3.38 LZL-08 中等风化花岗岩 0.26 2.03 0.79 XF-03 块状铅锌矿石 0.14 33.42 1.55 XF-04 磁黄铁矿铅锌矿石 0.25 25.84 17.61 XF-09 磁黄铁矿多金属硫化物矿石 12.53 0.15 0.21 -
[1] 王婵, 刘皓, 缪秉魁, 等. 湖南香花岭矿区稀有金属分布特征和成矿模式[J]. 桂林理工大学学报, 2016, 36(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601010.htm
Wang C, Liu H, Miao B K, et al. Distribution characteristics and mineralization models of rare metals in Xianghualing ore district of Hunan[J]. Journal of Guilin University of Technology, 2016, 36(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601010.htm
[2] 易元顺, 肖颖斌, 黎原, 等. 湖南省东坡—香花岭地区锡矿成矿地质条件及找矿前景[J]. 资源环境与工程, 2020, 34(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202002007.htm
Yi Y S, Xiao Y B, Li Y, et al. The metallogenic geological conditions and prospecting prospects of tin deposits in Dongpo—Xianghualing area, Hunan Province[J]. Resources Environment & Engineering, 2020, 34(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202002007.htm
[3] 赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm
Zhao B, Zhang D H, Yu L, et al. Fromclark values to elemental geochemical properties or behaviors, and to mineralization[J]. Bulletin of Mineralogy, Petroloy and Geochemisty, 2014, 33(2): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm
[4] 李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
Li H, Zhang G Y, Yu B, et al. Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
[5] 钟江临. 湖南香花岭地区有色、稀有多金属矿床主要类型及找矿方向[J]. 华南地质与矿产, 2014, 30(2): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201402003.htm
Zhang J L. Major types and prospecting direction of nonferrous and rare polymetallic ore deposit in Xianghualing area, South China[J]. Geology and Mineral Resources of South China, 2014, 30(2): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201402003.htm
[6] 马生凤, 朱云, 孙红宾, 等. 封闭溶样-电感耦合等离子体质谱法测定硫化铅矿石中40种微量元素[J]. 矿物岩石地球化学通报, 2016, 35(3): 527-533.
Ma S F, Zhu Y, Sun H B, et al. Determination of 40 elements in lead sulfide ores by inductively coupled plasma mass spectrometry with pressurized acid digestion of samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 527-533.
[7] 张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm
Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm
[8] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136
Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136
[9] Eggin S M, Woodhead J D, Kinslet L P J, et al. A sample method for the precise analysis determination of ≥40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1996, 134: 311-326.
[10] 张廷忠, 何建华. 氢化物发生-原子荧光光谱法测定化探样品中痕量锡[J]. 理化检验(化学分册), 2012, 48(12): 1490-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201212037.htm
Zhang T Z, He J H. Determination of trace tin in geochemical samples by hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(12): 1490-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201212037.htm
[11] 常青, 蔡玉曼, 周康民, 等. 氢化物发生原子荧光光谱法测定钨钼矿石中锡[J]. 分析试验室, 2008, 27(增刊2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2118.htm
Chang Q, Cai Y M, Zhou K M, et al. Determination of tin in tungsten molybdenum ore by hydride generation atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement 2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2118.htm
[12] 张泽儒. 石墨炉原子吸收法测定化探样品中的微量锡[J]. 化学分析计量, 2015, 24(4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201504040.htm
Zhang Z R. Determination of trace tin in geochemical samples by graphite furnace atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2015, 24(4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201504040.htm
[13] 田小亭, 董海成, 田甜. 火焰原子吸收光谱法测定锌精矿中锌、铅含量[J]. 理化检验(化学分册), 2014, 50(8): 1035-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201408031.htm
Tian X T, Dong H C, Tian T. Determination of zinc and lead in zinc concentrate by flame atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(8): 1035-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201408031.htm
[14] 冀飞, 魏振园, 王卫东. X射线荧光光谱法在线检测铅锌矿浆品位的试验探讨[J]. 冶金分析, 2019, 39(8): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201908006.htm
Ji F, Wei Z Y, Wang W D. Experimental discussion on on-line detection of lead-zinc ore slurry grade by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(8): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201908006.htm
[15] 于兆水, 张勤, 李小莉, 等. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素[J]. 岩矿测试, 2014, 33(6): 844-848. http://www.ykcs.ac.cn/cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30
Yu Z S, Zhang Q, Li X L, et al. Determination of elements in biological samples by wavelength dispersion X-ray fluorescence spectrometry with high pressure powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848. http://www.ykcs.ac.cn/cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30
[16] 郝志红, 姚建贞, 唐瑞玲, 等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J]. 地质学报, 2016, 90(8): 2070-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
Hao Z H, Yao J Z, Tang R L, et al. Study on method for determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct[J]. Acta Geologica Sinica, 2016, 90(8): 2070-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
[17] 郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201502055.htm
Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of trace boron, molybdenum, silver, tin, lead in geochemical samples by direct current arc of full spectrum direct reading atomic emission spectroscopy (DC-arc-AES)[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201502055.htm
[18] 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm
Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm
[19] 王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367-373. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201608230125
Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367-373. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201608230125
[20] 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201909230137
Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201909230137
[21] Matschat R, Haβler J, Traub H, et al. Multielement trace determination in SiC powders: Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP-OES and DC arc OES[J]. Analytical and Bioanalytical Chemistry, 2005, 383: 1060-1074.
[22] 胡长春, 王沿方, 陈作王. 电感耦合等离子体原子发射光谱法测定锡铅合金中的锡[J]. 化学分析计量, 2018, 27(5): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201805034.htm
Hu C C, Wang Y F, Chen Z W. Determination of tin in tin-lead alloy by inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(5): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201805034.htm
[23] 胡璇, 李跃平, 石磊. 基体匹配法和内标法-电感耦合等离子体原子发射光谱测定铸造锌合金中高含量铝和铜光谱[J]. 冶金分析, 2014, 34(4): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201404004.htm
Hu X, Li Y P, Shi L. Comparison on the spectral interference correction in the determination of high content aluminum and copper in casting zinc alloy by inductively coupled plasma atomic emission spectrometry with matrix matching method and internal standard method[J]. Metallurgical Analysis, 2014, 34(4): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201404004.htm
[24] 李清彩, 赵庆令, 孙宁, 等. 电感耦合等离子体发射光谱测定区域地球化学样品中Cu、Mo、Pb、Sn、W、Zn元素[J]. 分析试验室, 2008, 27(增刊): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2095.htm
Li Q C, Zhao Q L, Sun N, et al. Determination of Cu, Mo, Pb, Sn, W, Zn in regional geochemical samples by inductively coupled plasma emission spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2095.htm
[25] 肖凡, 张宁, 姜云军, 等. 密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806011.htm
Xiao F, Zhang Y, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806011.htm
[26] 姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
[27] 张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pb, Zn, As, Sb, Mo, and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
[28] 王佳翰, 李正鹤, 杨峰, 等. 碱熔-电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2012, 41(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103015.htm
Wang J H, Li Z H, Yang F, et al. Determination of aluminum, iron, manganese, titanium in marine sediments by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2012, 41(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103015.htm
[29] 陈玉秀, 闫月娥, 马小文, 等. ICP-OES测定钒钛铁精矿中钛、镁、钒、锰和铬的含量[J]. 广州化工, 2019, 47(16): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201916042.htm
Chen Y X, Yan Y E, Ma X W, et al. Determination of titanium, magnesium, vanadium, manganese and chromium content in vanadium-titanium-iron concentrates by ICP-OES[J]. Guangzhou Chemical Industry, 2019, 47(16): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201916042.htm
[30] Daniel L, Laird D W, Hefter G T. Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168: 35-39.
[31] Wei X J, Tian Z Q. Simultaneous determination of ruthenium and zinc in catalysts for hydrogenation of benzene to cyclohexene using sodium peroxide fusion sample digestion and ICP -OES[J]. Advanced Materials Research, 2014, 1004-1005: 1281-1284.
[32] 赵昕, 严慧, 禹莲玲, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛[J]. 岩矿测试, 2020, 39(3): 459-466. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911020150
Zhao X, Yan H, Yu L L, et al. Determination of high content of titanium in ilmenite by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911020150
[33] 黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065
Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065
[34] 《岩石矿物分析》编委会. 岩石矿物分析(第四版第一分册)[M]. 北京: 地质出版社, 2011: 471-473, 205-206.
The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition: Vol. Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 471-473, 205-206.
[35] 郑大中, 李小英, 郑若峰, 等. 过氧化钠超强熔矿能力的新认识[J]. 四川地质学报, 2010, 30(4): 488-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004032.htm
Zheng D Z, Li X Y, Zheng R F, et al. New acquaintances of super strong melting ore capacity of Na2O2[J]. Acta Geologica Sichuan, 2010, 30(4): 488-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004032.htm