中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于连续流同位素质谱的地下水无机物氯稳定同位素测试方法及影响因素研究

刘君, 王莹, 苏嫒娜, 刘福亮, 张琳. 基于连续流同位素质谱的地下水无机物氯稳定同位素测试方法及影响因素研究[J]. 岩矿测试, 2022, 41(1): 80-89. doi: 10.15898/j.cnki.11-2131/td.202108090094
引用本文: 刘君, 王莹, 苏嫒娜, 刘福亮, 张琳. 基于连续流同位素质谱的地下水无机物氯稳定同位素测试方法及影响因素研究[J]. 岩矿测试, 2022, 41(1): 80-89. doi: 10.15898/j.cnki.11-2131/td.202108090094
LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. doi: 10.15898/j.cnki.11-2131/td.202108090094
Citation: LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. doi: 10.15898/j.cnki.11-2131/td.202108090094

基于连续流同位素质谱的地下水无机物氯稳定同位素测试方法及影响因素研究

  • 基金项目:
    国家自然科学基金项目(41502250);中国地质科学院基本科研业务费项目(YK201810)
详细信息
    作者简介: 刘君, 博士, 副研究员, 水文地质专业。E-mail: huilingjun69@163.com
    通讯作者: 王莹, 博士, 高级工程师, 水文地质专业。E-mail: wy5966@163.com
  • 中图分类号: O628;O657.63

Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors

More Information
  • 氯稳定同位素作为示踪剂,能指示水体演化和探索地质环境变化,在地球科学领域具有广泛的应用前景。连续流同位素质谱法(CF-IRMS)具有样品用量少和灵敏度高的优点,被广泛应用于氯等稳定同位素的测试。氯甲烷作为一种易挥发的气体,在反应过程及测试管路中容易逸出,造成样品损失。如何减少反应及测试过程中氯甲烷的流失,实现氯甲烷的分离纯化一直以来是影响CF-IRMS法测试精度的关键。本文利用稳定同位素比例质谱仪(IRMS),结合GC色谱分离技术,以氯同位素的国际标准物质(ISL-354)为基准,选择分析纯、标样、地下水样品三种类型的样品开展地下水无机物中氯稳定同位素CF-IRMS测试方法及影响因素的研究。通过采用GC手动进样和双路进参考气联合配置的进样方式,减少了反应和测试过程中氯甲烷的流失,保障了在线测试过程中氯甲烷的浓度,获得较好的测试精度。结果表明:本方法测定样品的37Cl/35Cl比值的标准偏差基本保持在±0.20‰范围内,不同实验室间样品测量值对比结果的误差小于0.035‰,满足地质样品再现性0.5‰的要求;在实验测试过程中,光、温度、硫酸盐的去除、持续的氦气流、分流比等是影响测试精度的关键参数,应严格控制这些参数的影响,以保障测试方法的精度。

  • 加载中
  • 图 1  GC-CF-IRMS氯同位素测试流程示意图

    Figure 1. 

    图 2  改进后样品的进样方式

    Figure 2. 

    表 1  标样的氯稳定同位素测试结果

    Table 1.  Measurement results of chlorine stable isotope of standard samples

    样品编号 δ37Cl(‰) 样品编号 δ37Cl(‰) 样品编号 δ37Cl(‰)
    BY-1-1 0.292 BY-1-2 0.250 BY-1-3 0.536
    BY-2-1 0.315 BY-2-2 0.655 BY-2-3 0.479
    BY-3-1 0.658 BY-3-2 0.255 BY-3-3 0.381
    BY-4-1 0.738 BY-4-2 0.514 BY-4-2 0.524
    平均值 0.501 平均值 0.419 平均值 0.480
    同一批次
    标准偏差
    0.2303 同一批次
    标准偏差
    0.2001 同一批次
    标准偏差
    0.0704
    三次测试
    标准偏差
    0.0426
    下载: 导出CSV

    表 2  样品的氯稳定同位素质谱测试结果

    Table 2.  Results of chlorine stable isotope of samples

    样品编号(分析纯) δ37Cl (‰) 样品编号(地下水) δ37Cl (‰) 样品编号(地下水) δ37Cl (‰)
    FXC-1-1 -0.142 GW1-1-1 0.726 GW2-1-1 0.601
    FXC-2-1 0.167 GW1-2-1 0.827 GW2-2-1 0.402
    FXC-3-1 0.386 GW1-3-1 -0.031 GW2-3-1 0.594
    FXC-4-1 0.369 GW1-4-1 0.634 GW2-4-1 0.431
    平均值 0.195 平均值 0.539 平均值 0.507
    同一批次
    标准偏差
    0.2457 同一批次
    标准偏差
    0.3881 同一批
    次标准偏差
    0.1052
    样品编号(分析纯) δ37Cl (‰) 样品编号(地下水) δ37Cl (‰) 样品编号(地下水) δ37Cl (‰)
    FXC-1-2 -0.085 GW1-1-2 0.723 GW2-1-2 0.695
    FXC-2-2 -0.388 GW1-2-2 0.234 GW2-2-2 0.622
    FXC-3-2 0.555 GW1-3-2 0.512 GW2-3-2 0.359
    FXC-4-2 0.813 GW1-4-2 0.542 GW2-4-2 0.473
    平均值 0.224 平均值 0.503 平均值 0.537
    同一批次
    标准偏差
    0.5557 同一批次
    标准偏差
    0.1634 同一批次
    标准偏差
    0.1505
    两次测试
    标准偏差
    0.0205 两次测试
    标准偏差
    0.0255 两次测试
    标准偏差
    0.0212
    下载: 导出CSV

    表 3  样品氯稳定同位素测试结果的精确度和准确度

    Table 3.  Precision and accuracy of chlorine stable isotope of samples

    样品名称 标准偏差(‰) 方法精确度(‰) 相对误差(‰)
    分析纯样品(FXC) 0.0205 0.0498 0.0095
    地下水(GW1) 0.0250 0.0358 0.0510
    地下水(GW2) 0.0180 0.0152 0.0180
    下载: 导出CSV

    表 4  不同实验室间测试结果对比

    Table 4.  Comparison of test results of chloride stable isotope determined by different laboratories

    样品编号 δ37Cl测试值(‰)
    本实验室测试1 本实验室测试2 青海盐湖所 滑铁卢大学 实验室间对比偏差
    FXC 0.195 0.224 0.20 - 0.016
    GW1 0.503 0.539 0.47 - 0.035
    GW2 0.507 0.537 - 0.540 0.018
    下载: 导出CSV
  • [1]

    Nier O, Hanson E E. A mass-spectrographic analysis of the ions produced in HCl under electron impact[J]. Physical Review, 1936, 50: 722-726. doi: 10.1103/PhysRev.50.722

    [2]

    Langvad T. Separation of chlorine isotope by ion- exchange chromatography[J]. Acta Chemica Scandinavica, 1954, 8(3): 526-527.

    [3]

    Hill J W, Fry A. Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles[J]. Journal of the American Chemical Society, 1962, 84.

    [4]

    Taylor J W, Grimsrud E P. Chlorine isotopic ratios by negative ion mass spectrometry[J]. Analytical Chemistry, 1969, 41(6): 805-810. doi: 10.1021/ac60275a002

    [5]

    Kaufman R S, Long A, Bentley H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309: 338-340. doi: 10.1038/309338a0

    [6]

    Xiao Y K, Zhang C G. High precision isotopic measure-ment of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 116: 183-192. doi: 10.1016/0168-1176(92)80040-8

    [7]

    Shouakar-Stash O, Drimmie R J, Frape S K. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(2): 121-127. doi: 10.1002/rcm.1762

    [8]

    Van Acker M R M D, Shahar A, Young E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13): 4663-4667. doi: 10.1021/ac0602120

    [9]

    Sakaguchi-Söder K, Jager J, Grund H, et al. Monitoring and evaluation of de-chlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3077-3084. doi: 10.1002/rcm.3170

    [10]

    Eastoe C J, Long A, Land L S, et al. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: Brine genesis and evolution[J]. Chemical Geology, 2001, 176(1-4): 343-360. doi: 10.1016/S0009-2541(00)00374-0

    [11]

    Eggenkamp H G M, Louvat P, Agrinier P, et al. The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater[J]. Geochimica et Cosmochimica Acta, 2019, 264: 13-29. doi: 10.1016/j.gca.2019.08.005

    [12]

    Pinti D L, Shouakar-Stash O, Castro M C, et al. The bromine and chlorine isotopic composition of the mantleas revealed by deep geothermal fluids[J]. Geochimica et Cosmochimica Acta, 2020, 276: 14-30. doi: 10.1016/j.gca.2020.02.028

    [13]

    Yu H T, Ma T, Du Y, et al. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br)[J]. Journal of Geochemical Exploration, 2019, 196: 57-65. doi: 10.1016/j.gexplo.2018.08.005

    [14]

    Eggenkamp H G M, Louvat P, Griffioen J, et al. Chlorine and bromine isotope evolution within a fully developed Upper Permian natural salt sequence[J]. Geochimica et Cosmochimica Acta, 2019, 245: 316-326. doi: 10.1016/j.gca.2018.11.010

    [15]

    Du Y, Ma T, Chen L Z, et al. Chlorine isotopic constraint on contrastive genesis of representative coastal and inland shallow brine in China[J]. Journal of Geochemical Exploration, 2016, 170: 21-29. doi: 10.1016/j.gexplo.2016.07.024

    [16]

    Eastoe C J. Stable chlorine isotopes in arid non-marine basins: Instances and possible fractionation mechanisms[J]. Applied Geochemistry, 2016, 74: 1-12. doi: 10.1016/j.apgeochem.2016.08.015

    [17]

    He Z K, Ma C M, Zhou A G, et al. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China[J]. Applied Geochemistry, 2018, 90: 129-141. doi: 10.1016/j.apgeochem.2018.01.003

    [18]

    Chen L Z, Ma T, Du Y, et al. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province, China[J]. Journal of Volcanology and Geothermal Research, 2016, 318: 45-54. doi: 10.1016/j.jvolgeores.2016.03.003

    [19]

    Liu X, Wei H Z, Williams-Jones A E, et al. Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study[J]. Chemical Geology, 2021, 581: 120406. doi: 10.1016/j.chemgeo.2021.120406

    [20]

    Alekseeva L P, Alekseev S V. Geochemistry of ground ice, saline groundwater, and brines in the Cryoartesian Basins of the northeastern Siberian platform[J]. Russian Geology and Geophysics, 2018, 59: 144-156. doi: 10.1016/j.rgg.2018.01.012

    [21]

    Hasegawa T, Nakata K, Mahara Y, et al. Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta, 2016, 192: 279-294. doi: 10.1016/j.gca.2016.08.002

    [22]

    Szocs T, Frape S, Gwynne R, et al. Chlorine stable isotope and helium isotope studies contributing to the understanding of the hydro-geochemical characteristics of old groundwater[J]. Procedia Earth and Planetary Science, 2017, 17: 877-880. doi: 10.1016/j.proeps.2017.01.004

    [23]

    查向平, 龚冰, 郑永飞. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002 http://www.ykcs.ac.cn/article/id/0691b869-82d9-416e-b608-329a8b73e674

    Zha X P, Gong B, Zheng Y F. Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002 http://www.ykcs.ac.cn/article/id/0691b869-82d9-416e-b608-329a8b73e674

    [24]

    查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定[J]. 岩矿测试, 2017, 36(4): 327-339. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201611190174

    Zha X P, Gong B, Zheng Y F. Precise measurement of carbon concentration and isotopic ratios in silicate rocks by a high sensitivity elemental analyzer coupled with a continuous flow isotope mass spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201611190174

    [25]

    高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120128

    Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120128

    [26]

    周爱国, 李小倩, 刘存富, 等. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003

    Zhou A G, Li X Q, Liu C F, et al. Review of analytical methods for chlorine isotopes in chlorinated volatile organic compounds and application in groundwater contamination[J]. Advances in Earth Science, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003

    [27]

    张原, 祁士华. 稳定氯同位素分析技术及其在有机氯污染物研究中的应用[J]. 化学进展, 2012, 24(12): 2384-2390. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201212012.htm

    Zhang Y, Qi S H. Techniques of stable chlorine isotope analysis and relevant applications in research of organochlorine pollutants[J]. Progress in Chemistry, 2012, 24(12): 2384-2390. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201212012.htm

    [28]

    甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm

    Gan Y Q, Yu K, Zhou A G, et al. Isotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm

    [29]

    桂建业, 张晶, 张辰凌, 等. 反应电离质谱法测定有机单体氯同位素的研究[J]. 分析化学, 2019, 47(2): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201902012.htm

    Gui J Y, Zhang J, Zhang C L, et al. Approach to compound-specific isotope analysis of chlorine with reaction mass spectrometry and its exploration[J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201902012.htm

    [30]

    刘存富, 王佩仪, 周炼. 高精度测定稳定氯同位素的制样方法[J]. 地质科技情报, 1995, 14(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.017.htm

    Liu C F, Wang P Y, Zhou L. Preparative method of high-precision measurement of chlorine stable isotope[J]. Geological Science and Technology Information, 1995, 14(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.017.htm

    [31]

    Liu Y D, Zhou A G, Gan Y Q, et al. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a GasBench Ⅱ[J]. Journal of Central South University, 2013, 20(1): 193-198. doi: 10.1007/s11771-013-1476-0

    [32]

    李小倩, 方玲, 刘运德, 等. 高氯酸盐稳定氯、氧同位素测试新技术[J]. 地质科技情报, 2015, 34(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504030.htm

    Li X Q, Fang L, Liu Y D, et al. New measurement technique for stable chlorine and oxygen isotopic compositions of perchlorate[J]. Geological Science and Technology Information, 2015, 34(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504030.htm

    [33]

    Xiao Y K, Zhou Y M, Wang Q Z, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2-4): 655-661. doi: 10.1016/S0009-2541(01)00349-7

    [34]

    Wei H Z, Jiang S Y, Xiao Y K, et al. Precise deter-mination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by positive thermal ionization mass spectrometer Cs2Cl+-graphite method[J]. Analytical Chemistry, 2012, 84(23): 10350-10358. doi: 10.1021/ac302498q

    [35]

    周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003005.htm

    Zhou Q S, Wang R. Advances in chlorine isotope geochemistry[J]. Earth Sciences Frontiers, 2020, 27(3): 42-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003005.htm

    [36]

    Rosenbaum J M, Cliff R A, Coleman M L. Chlorine stable isotopes: A comparison of dual inlet and thermal ionization mass spectrometric measurement[J]. Analytical Chemistry, 2000, 72(10): 2261-2264. doi: 10.1021/ac991297q

    [37]

    Godon A, Jendrzejewski N, Eggenkamp H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology, 2004, 207(1/2): 1-12.

    [38]

    张媛媛, 贺行良, 孙书文, 等. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探[J]. 岩矿测试, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012 http://www.ykcs.ac.cn/article/id/ykcs_20120413

    Zhang Y Y, He X L, Sun S W, et al. A preliminary study on the determination of organic carbon stable isotope of marine sediment by element analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012 http://www.ykcs.ac.cn/article/id/ykcs_20120413

  • 加载中

(2)

(4)

计量
  • 文章访问数:  2972
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2021-08-09
修回日期:  2021-09-27
录用日期:  2021-11-05
刊出日期:  2022-01-28

目录