中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中多环芳烃单体碳同位素分析的分离净化方法研究

谢曼曼, 刘美美, 王淑贤, 凌媛, 孙青. 土壤中多环芳烃单体碳同位素分析的分离净化方法研究[J]. 岩矿测试, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131
引用本文: 谢曼曼, 刘美美, 王淑贤, 凌媛, 孙青. 土壤中多环芳烃单体碳同位素分析的分离净化方法研究[J]. 岩矿测试, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131
XIE Man-man, LIU Mei-mei, WANG Shu-xian, LING Yuan, SUN Qing. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131
Citation: XIE Man-man, LIU Mei-mei, WANG Shu-xian, LING Yuan, SUN Qing. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

土壤中多环芳烃单体碳同位素分析的分离净化方法研究

  • 基金项目:
    国家自然科学基金青年基金项目(41302141);中国地质科学院基本科研业务费项目(CSJ202109)
详细信息
    作者简介: 谢曼曼, 博士, 助理研究员, 从事有机地球化学生物标记物同位素研究。E-mail: xiemm827@163.com
    通讯作者: 王淑贤, 高级工程师, 研究方向为分析化学。E-mail: 1009718437@qq.com 孙青, 博士, 研究员, 研究方向为地球化学。E-mail: sunqingemail@yahoo.com
  • 中图分类号: O657.63;S151.93

Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis

More Information
  • 应用单体碳同位素组成追溯多环芳烃(PAHs)类污染物的来源越来越受关注。单体同位素分析中,利用样品预处理减少共流出和未分峰(UCM),是实现同位素比值准确分析的重要前提。已有分离净化研究较少关注环数小于3的PAHs;或需联合使用高效液相色谱(HPLC)技术,但对实验室条件要求较高。本文期望避免使用HPLC技术,仅通过简单的固相萃取法,实现16种PAHs的分离净化,满足包括低环数在内的PAHs单体碳同位素分析的要求。实验对比了氨基和硅胶两种填料的固相萃取(SPE)小柱,以及正戊烷等10种淋洗溶剂对PAHs的分离净化富集效果。结果表明:氨基小柱中有20%以上的萘和苊不能与烷烃和未分峰完全分离,硅胶SPE小柱除杂效果和分离效果优于氨基小柱。选择1000mg/6mL硅胶SPE小柱,利用6mL正戊烷淋洗UCM和烷烃,5mL正戊烷-二氯甲烷(70:30,V/V)洗脱PAHs。利用气相色谱(GC)对分离净化效果进行初步检验,气体同位素质谱(GC-IRMS)进行单体碳同位素分析。16种PAHs的回收率为79%~128%,相对标准偏差为2%~13%(1σn=6),单体碳同位素比值(δ13C)分析精度为0.1‰~0.75‰,大幅降低了其中UCM和共流出对PAH单体碳同位素分析的干扰,尤其减少了对低环数PAHs单体碳同位素分析的影响,而且净化过程没有造成PAHs单体碳同位素分馏,满足PAHs单体碳同位素分析的要求。

  • 加载中
  • 图 1  (a) 氨基SPE小柱和(b)硅胶SPE小柱净化中各馏分中PAHs回收率

    Figure 1. 

    图 2  不同条件SPE小柱分离净化结果

    Figure 2. 

    图 3  2000ng添加样品净化前后色谱图

    Figure 3. 

    表 1  不同配比淋洗液溶剂用量及多环芳烃回收率

    Table 1.  Elute volume and recoveries of PAHs eluting with different solvents

    淋洗液溶剂 体积比(V/V) 淋洗液体积(mL) 回收率(%) (n=6)
    正戊烷 - 80 74~112
    正戊烷∶二氯甲烷 95∶5 30 66~121
    93∶7 20 66~113
    90∶10 20 84~131
    80∶20 10 85~122
    70∶30 5 84~119
    正己烷∶二氯甲烷 97∶3 25 70~113
    正己烷∶氯仿 90∶10 20 89~124
    环己烷∶二氯甲烷 97∶3 25 95~126
    90∶10 5 76~116
    下载: 导出CSV

    表 2  SPE小柱分离前后PAHs的δ13C分析精度和准确度

    Table 2.  Precision and accuracy of δ13C values of PAHs before and after SPE column separation

    PAHs化合物 PAHs工作标准 2000ng杂质添加 3000ng杂质添加 多杂质二次净化样品
    δ13C (‰) SD (1σ, n=5) δ13C (‰) SD (1σ, n=6) δ13C (‰) SD (1σ, n=6) δ13C (‰) SD (1σ, n=6)
    -24.70 0.45 -0.26 0.16 -0.73 0.15 -0.02 0.41
    苊烯 -22.71 0.28 0.95 0.28 0.73 0.13 0.97 0.43
    -23.10 0.13 0.39 0.29 0.22 0.17 0.31 0.27
    -26.20 0.06 1.12 0.12 0.59 0.18 1.07 0.29
    -24.22 0.40 0.32 0.17 0.20 0.21 0.05 0.24
    -24.45 0.24 0.89 0.20 0.71 0.40 0.66 0.45
    荧蒽 -23.51 0.30 -0.46 0.49 -0.29 0.20 -0.27 0.20
    -24.94 0.11 1.05 0.14 0.99 0.10 1.06 0.23
    苯并(a)蒽+䓛 -24.22 0.16 0.15 0.25 0.30 0.51 -0.19 0.72
    苯并(b)荧蒽+苯并(k)荧蒽 -26.41 0.12 0.82 0.80 1.08 0.65 1.46 0.63
    苯并(a)芘 -24.91 0.32 0.86 0.26 0.64 0.22 1.05 0.55
    茚并(1, 2, 3-cd)芘+二苯并(a, h)蒽 -23.74 0.46 1.11 0.30 0.69 0.27 0.62 0.32
    苯并(g, h, i)苝 -27.00 0.10 0.92 0.39 0.54 0.24 0.89 0.46
    下载: 导出CSV

    表 3  表土中多环芳烃单体碳同位素分析结果

    Table 3.  δ13C values of PAHs in topsoil samples

    PAHs化合物 JYZ-M JYZ-W Bus Station HN
    δ13C (‰) SD(‰) (1σ, n=6) δ13C (‰) SD(‰) (1σ, n=3) δ13C (‰) SD(‰) (1σ, n=3) δ13C (‰) SD(‰) (1σ, n=4)
    - - - - - - -23.61 0.03
    二氟联苯 -24.82 0.40 -25.09 0.13 -24.92 0.47 -23.88 0.16
    -24.76 0.32 -24.06 0.43 -24.71 0.66 -23.68 0.31
    荧蒽 -23.33 0.12 -24.54 0.66 -24.34 0.58 -23.54 0.19
    -22.57 0.24 -24.24 1.04 -24.22 0.36 -23.60 0.69
    三联苯 -27.05 0.73 -26.22 0.19 -25.71 0.08 -26.00 0.55
    下载: 导出CSV
  • [1]

    Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J]. Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015

    [2]

    Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2019, 386: 121663. http://www.sciencedirect.com/science/article/pii/S0304389419316176

    [3]

    Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J]. Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3

    [4]

    李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    [5]

    姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

    Jiang Y H, Wei S Z, Xi B D, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution in soils in China: Recent advances and future prospects[J]. Ecology and Environmental Sciences, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

    [6]

    苑金鹏, 钟宁宁, 吴水平. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

    Yuan J P, Zhong N N, Wu S P. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J]. Acta Scientiae Circumstantiae, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

    [7]

    李琪, 李钜源, 窦月芹, 等. 淮河中下游沉积物PAHs的稳定碳同位素源解析[J]. 环境科学研究, 2012, 25(6): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201206012.htm

    Li Q, Li J Y, Dou Y Q, et al. Compound-specific stable carbon isotopic analysis on origins of PAHs in sediments from the middle and lower reaches of the Huaihe River[J]. Research of Environmental Sciences, 2012, 25(6): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201206012.htm

    [8]

    白慧玲, 彭林, 刘效峰, 等. 太原市工、商业区PM10中PAHs碳同位素组成及来源[J]. 环境科学研究, 2013, 26(12): 1276-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201312003.htm

    Bai H L, Peng L, Liu X F, et al. Carbon isotope compositions and source apportionment of PAHs associated with PM10 of industrial and commercial districts in Taiyuan City[J]. Research of Environmental Sciences, 2013, 26(12): 1276-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201312003.htm

    [9]

    焦杏春, 王广, 叶传永, 等. 应用单体碳同位素分析技术探析农田土壤中多环芳烃的植物降解过程[J]. 岩矿测试, 2014, 33(6): 863-870. http://www.ykcs.ac.cn/article/id/c9cceb3a-69b7-49f8-9be6-79fdde98d7ae

    Jiao X C, Wang G, Ye C Y, et al. Study on the phytodegradation of PAHs from farmland soil using compound-specific isotope analysis technique[J]. Rock and Mineral Analysis, 2014, 33(6): 863-870. http://www.ykcs.ac.cn/article/id/c9cceb3a-69b7-49f8-9be6-79fdde98d7ae

    [10]

    Vasil'Chuk Y K, Belik A D, Budantseva N A, et al. Polycyclic aromatic hydrocarbons and carbon isotopes in a palsa peat (Bol 'shezemel' skaya Tundra)[J]. Eurasian Soil Science, 2021, 54(7): 999-1006. doi: 10.1134/S1064229321070139

    [11]

    Garbariene I, Garbaras A, Masalaite A, et al. Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis[J]. Atmospheric Environment, 2020, 237: 117673. doi: 10.1016/j.atmosenv.2020.117673

    [12]

    陆燕, 王小云, 曹建平. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测定[J]. 石油实验地质, 2018, 40(4): 532-537. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804012.htm

    Lu Y, Wang X Y, Cao J P. Compound-specific carbon stable isotope analysis of 16 polycyclic aromatic hydrocarbons in sediments by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Petroleum Geology and Experiment, 2018, 40(4): 532-537. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804012.htm

    [13]

    史兵方, 杨秀培, 唐婧, 等. 荧光法测定土壤中总的多环芳烃含量[J]. 环境科学导刊, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

    Shi B F, Yang X P, Tang J, et al. Determination of total polycyclic aromatic hydrocarbons in soil by fluorescence[J]. Environmental Science Survey, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

    [14]

    倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

    Ni J Z, Wang J, Li X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J]. Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

    [15]

    张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011

    Zhang D L, Liu N, Zhu Z G, et al. Sources and risk assessment of polycyclic aromatic hydrocarbon in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011

    [16]

    陶鑫, 全洗强, 俞建国, 等. 加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J]. 环境化学, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

    Tao X, Quan X Q, Yu J G, et al. Analysis of 16 polycyclic aromatic hydrocarbons in soil with accelerated solvent extraction, rotary evaporation for obtain a constant volume and high performance liquid chromatography[J]. Environmental Chemistry, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

    [17]

    张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃[J]. 岩矿测试, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012 http://www.ykcs.ac.cn/article/id/ykcs_20100512

    Zhang X H, Wang X Y. Determination of 16 polycyclic aromatic hydrocarbons in soils by gas chromatography-mass spectrometry[J]. Rock and Mineral Aanlysis, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012 http://www.ykcs.ac.cn/article/id/ykcs_20100512

    [18]

    王海娇, 王娜, 宋丽华, 等. GC-MS-MS法测定土壤中的16种多环芳烃[J]. 分析试验室, 2010, 29(S1): 412-414. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2010S1122.htm

    Wang H J, Wang N, Song L H, et al. Determination of 16 polycyclic aromatic hydrocarbons in soil by GC-MS-MS[J]. Chinese Journal of Analysis Laboratory, 2010, 29(S1): 412-414. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2010S1122.htm

    [19]

    Merritt D A, Brand W A, Hayes J M. Isotope-ratio-monitoring gas chromatography-mass spectrometry: Methods for isotopic calibration[J]. Organic Geochemistry, 1994, 21(6-7): 573-583. doi: 10.1016/0146-6380(94)90003-5

    [20]

    Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R

    [21]

    Okuda T, Naraoka H, Ishiwatari R. Spearation of PAHs in environmental samples by use of solid-phase extraction system for carbon isotope analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2000, 48(6): 387-394. doi: 10.5702/massspec.48.387

    [22]

    O'Malley V P, Abrajanojr T A, Hellou J. Determination of the 13C/12C ratios of individual PAH from environmental samples: Can PAH sources be apportioned?[J]. Organic Geochemistry, 1994, 21(6-7): 809-822. doi: 10.1016/0146-6380(94)90022-1

    [23]

    Delhomme O, Rieb E, Millet M. Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater[J]. Chromatographia, 2007, 65(3-4): 163-171. doi: 10.1365/s10337-006-0144-z

    [24]

    Kiss G, Varga-Puchony Z, Hlavay J. Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromato-graphy[J]. Journal of Chromatography A, 1996, 725: 261-272. doi: 10.1016/0021-9673(95)00940-X

    [25]

    Liu X, Bi X, Mai B, et al. Separation of PAHs in aerosol by thin layer chromatography for compound-specific stable carbon isotope analysis[J]. Talanta, 2005, 66: 487-494. doi: 10.1016/j.talanta.2004.11.017

    [26]

    Mazeas L, Budzinski H. Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: Application to standard reference materials and a sediment suspected of contamination from the Erika oil spill[J]. Journal of Chromatography A, 2001, 923: 165-176. doi: 10.1016/S0021-9673(01)00911-6

    [27]

    Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex[J]. Organic Geochemistry, 2006, 37: 674-687. doi: 10.1016/j.orggeochem.2006.01.013

    [28]

    Kim M. Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: Validation of isolation and stable carbon isotope analysis methods[M]. Texas: Texas A & M University, 2004: 50-70.

    [29]

    刘盛兰, 秦艳, 刘洪林, 等. 内蒙古草原土壤有机物提取分离及鉴定[J]. 土壤学报, 2017, 54(6): 1459-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201706015.htm

    Liu S L, Qin Y, Liu H L, et al. Isolation and identification of soil organic matter in Inner Mongolia grassland[J]. Acta Pedologica Sinica, 2017, 54(6): 1459-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201706015.htm

    [30]

    Naafs D F W, van Bergen P F, Boogert S J, et al. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season[J]. Soil Biology and Biochemistry, 2004, 36: 297-308. doi: 10.1016/j.soilbio.2003.10.005

    [31]

    Morley C P, Mainwaring K A, Doerr S H, et al. Organic compounds at different depths in a sandy soil and their role in water repellency[J]. Australian Journal of Soil Research, 2005, 43: 239-249. doi: 10.1071/SR04094

    [32]

    Atanassova I, Doerr S. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency[J]. European Journal of Soil Science, 2010, 61: 298-313. doi: 10.1111/j.1365-2389.2009.01224.x

    [33]

    Kumar A, Chahal K K, Kataria D. Comparison of chemical composition of root and rhizosphere soil extracts of tagete spatula L. : GC-MS analysis[J]. Asian Journal of Chemistry, 2017, 29(4): 797-800. doi: 10.14233/ajchem.2017.20307

    [34]

    何文珊, 李琳, 李炎, 等. 生姜不同有机溶剂提取物的GC-MS分析[J]. 热带亚热带植物学报, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

    He W S, Li L, Li Y, et al. GC-MS analysis of different solvent extracts of ginger[J]. Journal of Tropical and Subtropical Botany, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

    [35]

    罗庆, 王诗雨, 孙丽娜, 等. 同时加速溶剂萃取/气相色谱-质谱法测定植物中13种有机磷酸酯[J]. 分析测试学报, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

    Luo Q, Wang S Y, Sun L N, et al. Determination of determination of thirteen organophosphate esters in plants using gas chromatography-mass spectrometry with simultaneously accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

    [36]

    Wise S A, Chesler S N, Hertz H S, et al. Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds[J]. Analytical Chemistry, 1977, 49(14): 2306-2310. doi: 10.1021/ac50022a049

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1544
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2021-09-28
修回日期:  2021-10-25
录用日期:  2021-11-12
刊出日期:  2021-11-28

目录