Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review
-
摘要:
土壤镉污染已成为危害人体健康的主要因素之一,要实现精准、快速和有效地防治土壤镉污染,首先必须厘清土壤中镉的来源及其迁移转化行为。近年来,随着镉同位素分析技术的进步及其分馏机制认识的深入,镉同位素在土壤镉示踪中展示出了巨大的应用潜力。本文在前人研究的基础上,归纳了土壤样品镉同位素分析前处理方法以及测试技术的研究进展。对于基质复杂的土壤样品,高温高压密闭消解和微波消解可以满足其镉同位素测试要求。在分离纯化镉回收率足够、干扰元素去除彻底的情况下,应用多接收电感耦合等离子体质谱(MC-ICP-MS)分析镉同位素并采用标准-样品匹配法、外标法或双稀释剂法进行质量歧视校正,均可获得较高精度的土壤镉同位素组成数据。同时,本文概括了土壤多个潜在镉源的镉同位素组成以及典型过程(风化淋滤、吸附、沉淀/共沉淀、络合)镉同位素分馏方向与程度。结合最新研究成果,总结了镉同位素在示踪土壤镉来源及其迁移转化过程中的应用。在未来的工作中,需进一步开发和优化高精度镉同位素分析方法,建立土壤镉同位素指纹图谱,揭示土壤多组分、多界面过程中的镉同位素分馏机制和特征。
Abstract:BACKGROUND Soil cadmium pollution has become one of the main factors that endanger human health. Rapid and effective remediation of Cd pollution soil requires a fundamental understanding of Cd sources and geochemical cycling. With the advancement of Cd isotope analysis technology and the in-depth understanding of its fractionation mechanism, Cd isotopes provide new perspectives for understanding the source and fate of Cd in the soil.
OBJECTIVES To systematically summarize the cadmium isotope analysis method, and emphasize the research progress, problems, and potential application of Cd isotopes as tracers in soil.
METHODS Sample digestion methods, such as high-temperature digestion bombs, microwave acid digestion, ashing, and acid extraction, are reviewed here with ion-exchange separation and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS).
RESULTS Based on previous studies, this review systematically summarizes the fundamental principle and methodology of Cd isotopic analysis methods. For the soil samples, the high-temperature digestion bombs method and microwave acid digestion can meet its cadmium isotope analysis requirements. With sufficient recovery and complete removal of interfering elements, standard-sample bracketing, external normalization, and double-spike techniques can be used for mass bias correction to obtain accurate and reliable Cd isotope data. In addition, the theoretical basis of soil cadmium isotope tracing was reviewed. This review summarizes the cadmium isotopic composition of multiple potential cadmium sources in soil and the direction and extent of cadmium isotope fractionation in typical processes (weathering leaching, adsorption, precipitation/co-precipitation, complexation). Combined with the latest research results, the application of cadmium isotopes in tracing soil cadmium sources and their migration and transformation processes is summarized.
CONCLUSIONS In the future, we should further develop and optimize the high-precision cadmium isotope analysis method, construct the fingerprint map of soil cadmium isotope, and reveal the cadmium isotope fractionation mechanisms in the processes of multi-component and multi-interface.
-
表 1 对镉同位素测试产生干扰的同质异位素(相对丰度单位%)和多原子离子
Table 1. Isobaric and polyatomic interferences in the mass range used for Cd isotopic analysis (all values are % abundance)
质量数 Cd 同质异位素干扰 多原子离子干扰[56] Pd Sn In M40Ar+ M16O+ 105 - 22.33 - - 65Cu - - - 106 1.25 27.33 - - 66Zn - - - 107 - - - - 67Zn - - - 108 0.89 26.46 - - 68Zn - 92Mo - 109 - - - - - 69Ga - - 110 12.49 11.72 - - 70Zn 70Ge 94Mo - 111 12.80 - - - - 71Ga 95Mo - 112 24.13 - 0.97 - 72Ge - 96Mo 96Ru 113 12.22 - - 4.3 73Ge - 97Mo - 114 28.73 - 0.66 - 74Ge - 98Mo 98Ru 115 - - 0.34 95.7 - 75As - 99Ru 116 7.49 - 14.54 - 76Ge 76Se 100Mo 100Ru 117 - - 7.68 - - 77Se - 101Ru 118 - - 24.22 - 78Kr 78Se 102Pd 102Ru 注:“-”表示不存在该质量数同位素或者干扰。 表 2 土壤镉分离纯化方法
Table 2. Separation and purification methods of Cd in soil
树脂类型 用量(mL) 淋洗酸种类 流程空白(ng) 镉回收率(%) 参考文献 AG1-X8/ Eichrom TRU Spec 2.0/0.12 3.0/0.5/1.0/2.0/8.0mol/L盐酸,0.5mol/L硝酸-0.1mol/L氢溴酸(两次),2.0mol/L硝酸(两次);6.0mol/L盐酸 ≤0.02 - Cloquet等(2005)[58] AG MP-1 2.0 1.2/0.3/0.012/0.0012mol/L盐酸 < 0.20 >95.0 Cloquet等(2005)[59] AG MP-1M 3.0 2.0/0.3/0.012/0.06/0.0012mol/L盐酸 < 0.20 >90.0 Gao等(2008)[60] AG MP-1M 3.0 2.0/0.3/0.06/0.012/0.0012mol/L盐酸 - 99.8 张羽旭等(2010)[57] AG MP-1M 2.0 2.0/0.3/0.012/0.0012mol/L盐酸 0.14±0.09 >95.0 Pallavicini等(2014)[53] AG MP-1M 4.0 2.0/0.3/0.06/0.012/0.0012mol/L盐酸,两次 < 0.23 >90.0 杜晨(2015)[61] AG MP-1M 2.0 7.0mol/L盐酸;8.0mol/L氢氟酸-2.0mol/L盐酸;0.1mol/L氢溴酸-0.5mol/L硝酸;0.5mol/L硝酸 - >99.0 段桂玲等(2016)[62] AG MP-1M 2.5 2.0/0.3/0.06/0.012/0.0012mol/L盐酸 < 0.10 >97.8 Li等(2018)[34] AG MP-1 2.0 1.2/0.012/0.0012mol/L盐酸 - 94.8~99.3 Park等(2019)[51] AG1-X8 2.0 6.0/0.3mol/L盐酸;0.5mol/L硝酸-0.1mol/L氢溴酸 < 0.08 - Liu等(2020)[35] AG MP-1M 2.8 2.0/1.0/0.3/0.06/0.012/0.0012mol/L盐酸,两次 < 0.14 >90.0 Tan等(2020)[36] AG MP-1M 1.0 0.25mol/L氢溴酸;2.0/0.5/0.002mol/L盐酸 - 99.1 谢胜凯等(2020)[63] 注:“-”表示原文献中没有报道该数据。 表 3 土壤镉同位素的主要测试方法及精度
Table 3. Major analysis method and precision of soil Cd isotope studies
MC-ICP-MS仪器型号 质量歧视校正方法 精度(‰) (±2SD, δ114/110Cd) 参考文献 IsoProbe SSB 0.12 Cloquet等(2005)[59] IsoProbe SSB 0.11 Gao等(2008)[60] Neptune plus Ag normalization 0.10 Pallavicini等(2014)[53] Neptune plus SSB 0.12 杜晨(2015)[61] Nu SSB 0.08 Wen等(2015)[68] Neptune plus SSB 0.09 Li等(2018)[34] NuⅡ 111Cd-113Cd DS 0.09 Li等(2018)[34] Neptune plus 111Cd-113Cd DS 0.05 Liu等(2020)[35] Neptune plus 111Cd-113Cd DS 0.03 Tan等(2020)[36] NuⅡ/Ⅲ 111Cd-113Cd DS 0.06/0.03 Tan等(2020)[36] Neptune Plus 111Cd-113Cd DS 0.06 Lu等(2021)[69] NuⅡ 111Cd-113Cd DS < 0.09 Peng等(2021)[70] -
[1] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
[2] Grant C, Flaten D, Tenuta M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment[J]. Plant and Soil, 2013, 372(1): 221-233.
[3] Teng Y, Wu J, Lu S, et al. Soil and soil environmental quality monitoring in China: A review[J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014
[4] Wan D, Zhang N, Chen W, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(32): 32130-32139. doi: 10.1007/s11356-018-3173-x
[5] Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
[6] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm
Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm
[7] Liu X, Zhong L, Meng J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033
[8] Wang P, Chen H, Kopittke P M, et al. Cadmium contam-ination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063
[9] Yang S, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044
[10] Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
[11] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049
Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049
[12] Huang H, Chen H P, Kopittke P M, et al. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 2021, 55(3): 1750-1758.
[13] Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995
[14] 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm
Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm
[15] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm
Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm
[16] 党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm
Dang Z, Yao Q, Li X F, et al. Geochemical constraints on heavy metal speciation and distribution in contaminated soils of mining areas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm
[17] 韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm
Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm
[18] Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. doi: 10.2138/rmg.2017.82.1
[19] Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407: 124812. doi: 10.1016/j.jhazmat.2020.124812
[20] Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.
[21] Rosman K J R, de Laeter J R. Isotopic fractionation in meteoritic cadmium[J]. Nature, 1976, 261(5557): 216-218. doi: 10.1038/261216a0
[22] Rosman K J R, de Laeter J R, Gorton M P. Cadmium isotope fractionation in fractions of two H3 chondrites[J]. Earth and Planetary Science Letters, 1980, 48(1): 166-170. doi: 10.1016/0012-821X(80)90179-X
[23] Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335.
[24] Wombacher F, Rehkämper M, Mezger K, et al. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 646-667. doi: 10.1016/j.gca.2007.10.024
[25] Schmitt A D, Galer S J G, Abouchami W. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1): 262-272.
[26] Zhong Q, Zhou Y, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585
[27] 王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002 http://www.ykcs.ac.cn/article/id/a296e5ab-7ecd-4198-b09d-0c5cb20a7158
Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002 http://www.ykcs.ac.cn/article/id/a296e5ab-7ecd-4198-b09d-0c5cb20a7158
[28] 李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012090160
Li H T, Yang X, Lei H J, et al. Research progress of cadmium stable isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012090160
[29] Zhong Q, Yin M, Zhang Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J]. Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015
[30] Xie X, Luo J, Guan L, et al. Cadmium isotope fractionation during leaching with nitrilotriacetic acid[J]. Chemical Geology, 2021, 584: 120523. doi: 10.1016/j.chemgeo.2021.120523
[31] He H T, Xing L C, Qin S J, et al. Equilibrium Cd isotopic fractionation between Cd(OH)2(S), apatite, adsorbed Cd2+, and Cd(aq)2+: Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation[J]. Geochemical Journal, 2020, 54(5): 289-297. doi: 10.2343/geochemj.2.0599
[32] Zhang S N, Gu Y, Zhu Z L, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J]. Science of the Total Environment, 2021, 761: 143262. doi: 10.1016/j.scitotenv.2020.143262
[33] Borovic ˇka J, Ackerman L, Rejšek J. Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction[J]. Talanta, 2021, 221: 121389. doi: 10.1016/j.talanta.2020.121389
[34] Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236
[35] Liu M S, Zhang Q, Zhang Y, et al. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 169-182. doi: 10.1111/ggr.12291
[36] Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. doi: 10.1039/C9JA00397E
[37] Yan X, Zhu M, Li W, et al. Cadmium isotope fractionation during adsorption and substitution with iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2021, 55(17): 11601-11611.
[38] Ratié G, Chrastny V, Guinoiseau D, et al. Cadmium isotope fractionation during complexation with humic acid[J]. Environmental Science & Technology, 2021, 55(11): 7430-7444.
[39] Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029
[40] Wasylenki L E, Swihart J W, Romaniello S J. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength[J]. Geochimica et Cosmochimica Acta, 2014, 140: 212-226. doi: 10.1016/j.gca.2014.05.007
[41] Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060
[42] Xie X, Yan L, Li J, et al. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment[J]. Science of the Total Environment, 2021, 760: 143330. doi: 10.1016/j.scitotenv.2020.143330
[43] Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039
[44] Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1): 243-253.
[45] Zhao Y, Li Y, Wiggenhauser M, et al. Theoretical isotope fractionation of cadmium during complexation with organic ligands[J]. Chemical Geology, 2021, 571: 120178. doi: 10.1016/j.chemgeo.2021.120178
[46] Wang P, Li Z, Liu J, et al. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses[J]. Environmental Pollution, 2019, 249: 208-216. doi: 10.1016/j.envpol.2019.03.034
[47] 刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm
Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmetal tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm
[48] Komárek M, Ratié G, Vaňková Z, et al. Metal isotope complexation with environmentally relevant surfaces: Opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2021, https://doi.org/10.1080/10643389.2021.1955601. https://doi.org/10.1080/10643389.2021.1955601
[49] 苗鑫, 陈林捷, 周飞杨, 等. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022
Miao X, Chen L J, Zhou F Y, et al. Comparison of sample digestion methods for high precision cadmium isotope analysis[J]. Journal of Instrumental Analysis, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022
[50] Fedyunina N N, Seregina I F, Bolshov M A, et al. Investi-gation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J]. Analytica Chimica Acta, 2012, 713: 97-102. doi: 10.1016/j.aca.2011.11.035
[51] Park J, Kim J Y, Lee K, et al. Comparison of acid extra-ction and total digestion methods for measuring Cd isotope ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2019, 192(1): 41.
[52] Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D
[53] Pallavicini N, Engström E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G
[54] Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 245-256. doi: 10.1111/ggr.12357
[55] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012150166
Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012150166
[56] Gault-Ringold M. The marine biogeochemisty of cadmium: Studies of cadmium isotopic variations in the Southern Ocean[D]. Dunedin: University of Otago, 2011.
[57] 张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm
Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological sample[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm
[58] Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2
[59] Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, NOD-P-1, NOD-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x
[60] Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
[61] 杜晨. 镉同位素分析及其古海洋环境指示意义[D]. 武汉: 中国地质大学(武汉), 2015.
Du C. Cadmium isotope analytical method and its paleo-ocean environmental sugnificance[D]. Wuhan: China University of Geosciences (Wuhan), 2015.
[62] 段桂玲, 段瑞春, 谭娟娟, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10-16. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.003
Duan G L, Duan R C, Tan J J, et al. Improvement on effective separation between cadmium and tin in soil samples for the determination of cadmium isotopic composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10-16. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.003
[63] 谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm
Xie S K, Zeng Y, Liu R P, et al. Separation of cadmium in hydrobromic acid by anion resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm
[64] Zhou F Y, He D, Miao X, et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting[J]. Analytical Chemistry, 2021, 93(19): 7196-7203. doi: 10.1021/acs.analchem.1c00145
[65] 朱志勇, 朱祥坤, 杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120123
Zhu Z Y, Zhu X K, Yang T. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120123
[66] Böhlke J K, Laeter J R D, Bièvre P D, et al. Isotopic compositions of the elements, 2001[J]. Journal of Physical and Chemical Reference Data, 2005, 34(1): 57-67. doi: 10.1063/1.1836764
[67] Abouchami W, Galer S J G, de Baar H J W, et al. Biogeo-chemical cycling of cadmium isotopes in the Southern Ocean along the zero meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022
[68] Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025
[69] Lu Z, Zhu J M, Tan D, et al. δ114/110Cd values of a suite of different reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 565-581. doi: 10.1111/ggr.12380
[70] Peng H, He D, Guo R, et al. High precision cadmium isotope analysis of geological reference materials by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 390-398. doi: 10.1039/D0JA00424C
[71] Chrastny V, adková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002
[72] Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4
[73] Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016
[74] Martinková E, Chrastny V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039
[75] Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractiona-tion during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013
[76] Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40(8): 2525-2530.
[77] Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1919-1928.
[78] Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7369-7377.
[79] Barraza F, Moore R E T, Rehkämper M, et al. Cadmium isotope fractionation in the soil -cacao systems of ecuador: A pilot field study[J]. RSC Advances, 2019, 9(58): 34011-34022. doi: 10.1039/C9RA05516A
[80] Gou W, Li W, Ji J, et al. Zinc isotope fractionation during sorption onto Al oxides: Atomic level understanding from EXAFS[J]. Environmental Science & Technology, 2018, 52(16): 9087-9096.
[81] 李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm
Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessmet of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm
[82] Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127