Review on the Research Progress of Natural Source Zone Depletion in LNAPL Contaminated Sites
-
摘要:
污染场地的健康风险和环境地质危害备受关注, 自然衰减被公认是优选修复技术。对存在非水相液体的场地, 源区非水相液体残余导致的“拖尾和反弹”问题对污染场地自然衰减技术提出了挑战。近年来源区自然消除技术的出现丰富深化了自然衰减修复的内涵, 展现了解决“拖尾和反弹”问题的巨大潜力。本文综述了轻非水相液体(LNAPL)污染场地源区自然消除的研究历程和最新成果, 研究显示: ①2000年至今, 自然衰减修复的相关研究逐渐从地下水污染羽衰减转向包气带源区自然消除; ②包气带自然消除过程被证实是源区自然消除的关键生物过程, 占LNAPL总质量损失的90%~99%;③LNAPL挥发过程中的生物降解是源区自然消除的主要研究对象。在以上研究过程中,建立的源区自然消除研究方法:①可分为LNAPL源区-羽识别、定性判断和定量估算三个部分; ②包气带定量评估常用浓度梯度、二氧化碳通量(动态密闭室和静态捕集)和热力学梯度是量化评估的三类方法。综合已有的研究进展和难点, 可以预见, 在未来研究中, 识别源区LNAPL的成分变化、明确源区自然消除的限速因子,以及开发恰当的气体脱气和气泡逃逸观测方法,是源区自然消除修复方法应用推广需解决的关键科学问题。
Abstract:BACKGROUND Human health risks and potential environmental geological hazards caused by contaminated sites have been paid much attention. Monitored natural attenuation (MNA) is recognized as a preferred remediation technique. However, for sites with non-aqueous phase liquids (NAPLs), the problem of "tailing rebound" caused by the residue of NAPLs in the source area poses a challenge to the MNA technology. In recent years, the emergence of natural source zone depletion (NSZD) enriches the connotation of MNA remediation, and it is a potential way to solve the problem of "Tailing & Rebound".
OBJECTIVES To summarize the research process and latest achievements of NSZD for light non-aqueous phase liquid (LNAPL) contaminated sites.
METHODS A comprehensive review was conducted on the literature on NSZD for LNAPL contaminated sites from the end of the 1990's. The conceptual models of vertical zoning natural elimination in LNAPL source areas have been reviewed. The key control factors on NSZD and main scientific and technological challenges for future research have been fully discussed.
RESULTS The research shows that: (1) since 2000, the research on MNA remediation has gradually shifted from groundwater pollution plume attenuation to natural depletion of vadose zone source areas; (2) The natural elimination process of aeration zones has proved to be the key biological process of NSZD, accounting for 90%-99% of the total mass loss of LNAPLs; (3) biodegradation in the volatilization process of LNAPL is the major research field of NSZD. The following research methods of NSZD are established: (1) the NSZD method can be divided into three parts: LNAPL source area plume identification, qualitative judgment and quantitative estimation; (2) The Concentration Gradient Method, CO2 Fluxes Method (including Dynamic Closed Chambers and CO2 Traps) and Thermal Gradient Method are three major methods for quantitative estimation.
CONCLUSIONS Based on the existing research progress and challenges, the key scientific problems to be solved in the application and promotion of NSZD include identifying the composition change of LNAPLs in the source area, clarifying the speed limiting factor for natural elimination in the source area, and developing appropriate monitoring methods for degassing and bubble escape.
-
-
表 1 自然衰减的研究范式
Table 1. Research paradigm of natural attenuation
项目 地下水污染羽自然衰减(1990—2000年) 非水相液体污染物(LNAPL)污染源区自然消除(2000年至今) 管理重点 污染羽迁移多远 源区持续时间多长 主要污染物 溶解的苯系物 所有LNAPL成分 主要生物降解过程 电子受体介导的生物降解 产甲烷 包气带关键生物降解过程 LNAPL挥发蒸汽好氧生物降解 LNAPL厌氧生物降解(产甲烷)和好氧甲烷氧化 饱水带关键生物降解过程 溶解苯系物的厌氧生物降解 产甲烷脱气和冒泡, 厌氧生物降解LNAPL的研究 关键指标 微生物降解能力 NSZD速率 方法要点 上下游电子受体和降解产物的对比 二氧化碳通量; 包气带耗氧量梯度; 热通量 典型衰减速率 苯系物的半衰期为2~4年 NSZD的速率约100~1000加仑/英亩/年 表 2 源区自然消除(NSZD)机制的机理过程
Table 2. Mechanism and processes of NSZD
机理过程 简要说明 机理过程 简要说明 1. 挥发 LNAPL化合物转化为气相 12. 饱水带源区自然衰减 饱水带的分配、非生物和生物降解 2. 溶解 LNAPL化合物转化为水相 13. 微生物迁移 微生物通过对流-弥散作用迁移 3. 毛细作用 压差导致的浸润液体在细管里升高和不浸润液体在细管里降低 14. 生物膜生长/脱落 附着在土壤颗粒上的微生物菌落的增厚和脱落 4. 多相流传输 各相流体的流动 15. 微生物营养物 基质或营养物质的微生物吸收活性 5. LNAPL残余 形成不可移动的LNAPL 16. 抑制因子 基质利用或生物量形成的限制因素 6. LNAPL成分的异质性 LNAPL成分的变化 17. 食物链 捕食者(如原生动物)和猎物(如细菌)的存在 7. 阻滞作用 取决于毛细作用对浸出和浸入过程的影响 18. 微生物差异 微生物在底物利用特性方面的差异 8. 介质的异质性 土壤性质的空间差异 19. 底物竞争 微生物同时消耗两种或两种以上底物 9. 饱和度变异 包气带含水饱和度的时空变化 20. 同化作用 微生物菌落生长初始滞后期 10.溶质传质 通过对流-弥散输送溶质 21. 气泡过程 生物降解使水相出现气泡 11.包气带源区自然衰减 包气带的分配、非生物和生物降解 表 3 NSZD的定性判断所需数据
Table 3. Data required for qualitative evaluation of NSZD
NSZD过程 数据 用途 源区LNAPL向下游地下水溶解 地下水监测井的静态水位 确定水力梯度和地下水流向(与浓度数据联合分析) 源区上下游地下水中溶解相污染物浓度 相较上游井, 下游井中溶解相碳氢化合物浓度的增加, 表明发生了溶解过程 渗透系数 估算饱和区污染物溶解和生物降解的损失率 源区溶解于地下水中的污染物生物降解 源区上下游地下水中作为反应物的溶解电子受体(如O2, NO3-, SO42-)和产物(如Fe2+, Mn2+) 相较上游井, 下游井中作为反应物的溶解电子受体(如O2, NO3-, SO42-)降低、产物(如Fe2+, Mn2+)增加, 表明发生了生物降解过程 源区上下游地下水中的溶解甲烷(CH4) 相较上游井, 下游井中的溶解甲烷(CH4)增加, 表明发生了产甲烷作用 源区污染物向包气带挥发 土壤垂向剖面土壤气中碳氢化合物浓度 随着与源区距离的增加, 土壤气体中碳氢化合物的浓度降低, 表明发生了挥发作用 土壤中总石油烃组成 土壤中碳氢化合物组成发生变化, 表明发生了NSZD过程, 改变化是质量损失过程的综合效应体现 源区挥发至包气带的污染物生物降解 土壤垂向剖面呼吸和相关土壤气浓度(O2, CO2, CH4) 在源区, 随着深度的增加, 土壤气O2减少、CO2增加或CH4浓度增加, 表明发生NSZD过程(CH4也可能来自自然界, 可通过对比背景区的碳稳定同位素来区分) 土壤中TPH的浓度随时间变化 需要大量样本, 较难长期监测 有效扩散系数: 实测或经验公式估算(土壤湿度、总孔隙度) 估算挥发和生物降解造成的损失率(氧气输送或甲烷产生率) 表 4 碳氢化合物的化学计量系数表(以C10H22计)
Table 4. Conversion coefficients of hydrocarbons (calculated by C10H22)
微生物降解过程 电子受体/代谢产物 化学计量系数(Si) 好氧降解 O2 0.29kg-HC/kg-O2 硝酸盐还原 NO3- 0.19kg-HC/kg-NO3- 铁还原 Fe2+ 0.041kg-HC/kg-Fe2+ 硫酸盐还原 SO42- 0.19kg-HC/kg-SO42- 锰还原 Mn2+ 0.083kg-HC/kg-Mn2+ 产甲烷 CH4 1.1kg-HC/kg-CH4 -
[1] Geel P, Sykes J F. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand, 1. Laboratory experiment and image analysis techniques[J]. Journal of Contaminant Hydrology, 1994, 17(1): 1-25. doi: 10.1016/0169-7722(94)90075-2
[2] Cheng Y, Zhu J. Significance of mass-concentration relation on the contaminant source depletion in the nonaqueous phase liquid (NAPL) contaminated zone[J]. Transport in Porous Media, 2021, 137(2): 399-416. doi: 10.1007/s11242-021-01567-5
[3] Fontenot M M. Study of transport and dissolution of a non-aqueous phase liquid in porous media: Effects of low-frequency pulsations and surfactants[D]. Iowa State University, 2001.
[4] Wiedemeier T H, Wilson J T, Kampbell D H, et al. Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater[R]. Prsons Engineering Science Inc Denver Co., 1995.
[5] Wiedemeier T H, Swanson M A, Moutoux D E, et al. Technical protocol forevaluating natural attenuation of chlorinated solvents in groundwater[R]. San Antonio, TX: US Air Force Center for Environmental Excellence 1996.
[6] Newell C J, Adamson D T, Kulkarni P R, et al. Monitored natural attenuation to manage PFAS impacts to groundwater: Scientific basis[J]. Groundwater Monitoring & Remediation, 2021, 41(4): 76-89.
[7] 张敏, 张巍, 郭彩娟. 污染场地自然衰减修复的原理与实践[M]. 北京: 科学出版社, 2019.
Zhang M, Zhang W, Guo C J. Remediation by natural attenuation at contaminated sites: Principles and practice[M]. Beijing: Science Press, 2019.
[8] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141
Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185-1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141
[9] Pardieck D L, Guarnaccia J. Natural attenuation of groundwater plume source zones: A definition[J]. Journal of Soil Contamination, 1999, 8(1): 9-15. doi: 10.1080/10588339991339171
[10] MacDonald J A. Evaluating natural attenuation for groundwater cleanup: The national research council has issued the first comprehensive assessment of when natural attenuation works[J]. Environmental Science & Technology, 2000, 34(15): 346A-353A.
[11] Rittmann B E. Definition, objectives, and evaluation of natural attenuation[J]. Biodegradation, 2004, 15(6): 349-357. doi: 10.1023/B:BIOD.0000044587.05189.99
[12] Office of Solid Waste and Emergency Response, United States Environmental Protection Agency. Use of monitored natural attenuation at Superfund, RCRA corrective action, and underground storage tank sites[R]. 1997.
[13] Mcdade J M, Mcguire T M, Newell C J. Analysis of DNAPL source-depletion costs at 36 field sites[J]. Remediation Journal, 2005, 15(2): 9-18. doi: 10.1002/rem.20039
[14] Carey G R, McBean E A, Feenstra S. DNAPL source depletion: 2. Attainable goals and cost-benefit analyses[J]. Remediation Journal, 2014, 24(4): 79-106. doi: 10.1002/rem.21406
[15] Ekre R, Johnson P C, Rittmann B, et al. Assessment of the natural attenuation of NAPL source zones and post-treatment NAPL source zone residuals[R]. Tampe: Arizona State University Tempe, 2013.
[16] Kueper B H, Stroo H F, Vogel C M, et al. Chlorinated solvent source zone remediation[M]. New York: Springer, 2014.
[17] Verginelli I, Baciocchi R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites[J]. Journal of Contaminant Hydrology, 2021, 241: 103807. doi: 10.1016/j.jconhyd.2021.103807
[18] Wozney A, Clark I D, Mayer K U. Quantifying natural source zone depletion at petroleum hydrocarbon contaminated sites: A comparison of 14C methods[J]. Journal of Contaminant Hydrology, 2021, 240: 103795. doi: 10.1016/j.jconhyd.2021.103795
[19] ITRC. Evaluating natural source zone depletion at sites with LNAPL[R]. Washington DC: Interstate Technology and Regulatory Council, 2009.
[20] Molins S, Mayer K U, Amos R T, et al. Vadose zone attenuation of organic compounds at a crude oil spill site—Interactions between biogeochemical reactions and multicomponent gas transport[J]. Journal of Contaminant Hydrology, 2010, 112(1-4): 15-29. doi: 10.1016/j.jconhyd.2009.09.002
[21] Sihota N J, Singurindy O, Mayer K U. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer[J]. Environmental Science & Technology, 2011, 45(2): 482-488.
[22] McCoy K M. Resolving natural losses of LNAPL using carbon dioxide traps[D]. Colorado: Colorado State University, 2012.
[23] McCoy K, Zimbron J, Sale T, et al. Measurement of natural losses of LNAPL using CO2 traps[J]. Groundwater, 2015, 53(4): 658-667. doi: 10.1111/gwat.12240
[24] Tracy M K. Method comparison for analysis of LNAPL natural source zone depletion using CO2 fluxes[D]. Colorado: Colorado State University, 2015.
[25] Sihota N J, Trost J J, Bekins B A, et al. Seasonal variability in vadose zone biodegradation at a crude oil pipeline rupture site[J]. Vadose Zone Journal, 2016, 15(5): 1-14. doi: 10.2136/vzj2015.10.0134
[26] Garg S, Newell C J, Kulkarni P R, et al. Overview of natural source zone depletion: Processes, controlling factors, and composition change[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 62-81.
[27] Ririe G T, Sweeney R E. Rapid approach to evaluate NSZD at LNAPL sites[C]//Tenth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. 2018.
[28] Askarani K K, Stockwell E B, Piontek K R, et al. Thermal monitoring of natural source zone depletion[J]. Groundwater Monitoring & Remediation, 2018, 38(3): 43-52.
[29] Lari K S, Davis G B, Rayner J L, et al. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches[J]. Water Research, 2019, 157: 630-646. doi: 10.1016/j.watres.2019.04.001
[30] Kulkarni P R, Newell C J, King D C, et al. Application of four measurement techniques to understand natural source zone depletion processes at an LNAPL site[J]. Groundwater Monitoring & Remediation, 2020, 40(3): 75-88.
[31] Askarani K K, Sale T C. Thermal estimation of natural source zone depletion rates without background correction[J]. Water Research, 2020, 169: 115245. doi: 10.1016/j.watres.2019.115245
[32] 李忠煜, 赵江华, 何峻, 等. 油气化探样品酸解气中甲烷与氢气的相关性研究[J]. 岩矿测试, 2018, 37(3): 313-319. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710240170
Li Z Y, Zhao J H, He J, et al. Research on the correlation between methane and hydrogen in acid-hydrolyzed gases for geochemical exploration samples[J]. Rock and Mineral Analysis, 2018, 37(3): 313-319. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710240170
[33] Smith J J, Benede E, Beuthe B, et al. A comparison of three methods to assess natural source zone depletion at paved fuel retail sites[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, DOI:10.1144/qjegh2021-005.
[34] Robbins G A, Deyo B G, Temple M R, et al. Soil-gas surveying for subsurface gasoline contamination using total organic vapor detection instruments. Part Ⅰ. Theory and laboratory experimentation[J]. Groundwater Monitoring & Remediation, 1990, 10(3): 122-131.
[35] Robbins G A, Deyo B G, Temple M R, et al. Soil-gas surveying for subsurface gasoline contamination using total organic vapor detection instruments. Part Ⅱ. Field experimentation[J]. Ground Water Monitoring Review, 1990, 10(4): 110-117.
[36] Deyo B G, Robbins G A, Binkhorst G K. Use of portable oxygen and carbon dioxide detectors to screen soil gas for subsurface gasoline contamination[J]. Groundwater, 1993, 31(4): 598-604. doi: 10.1111/j.1745-6584.1993.tb00593.x
[37] Robbins G A, McAninch B E, Gavas F M, et al. An evaluation of soil-gas surveying for H2S for locating subsurface hydrocarbon contamination[J]. Groundwater Monitoring & Remediation, 1995, 15(1): 124-132.
[38] Aelion C M, Shaw J N, Ray R P, et al. Simplified methods for monitoring petroleum-contaminated ground water and soil vapor[J]. Soil and Sediment Contamination, 1996, 5(3): 225-241. doi: 10.1080/15320389609383527
[39] Tassi F, Venturi S, Cabassi J, et al. Biodegradation of CO2, CH4 and volatile organic compounds (VOCs) in soil gas from the Vicano-Cimino hydrothermal system (central Italy)[J]. Organic Geochemistry, 2015, 86: 81-93. doi: 10.1016/j.orggeochem.2015.06.004
[40] ClarkⅡ C J. Field detector evaluation of organic clay soils contaminated with diesel fuel[J]. Environmental Forensics, 2003, 4(3): 167-173. doi: 10.1080/713848506
[41] Liang K F, Kuo M C T. A new leak detection system for long-distance pipelines utilizing soil-gas techniques[J]. Groundwater Monitoring & Remediation, 2006, 26(3): 53-59.
[42] Amos R T, Bekins B A, Delin G N, et al. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes[J]. Journal of Contaminant Hydrology, 2011, 125: 13-25. doi: 10.1016/j.jconhyd.2011.04.003
[43] 陈宇峰, 郑秀丽, 李晶, 等. 渤海沉积物中甲烷氧化速率及同位素分馏规律研究[J]. 岩矿测试, 2018, 37(2): 164-174. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201707100117
Chen Y F, Zheng X L, Li J, et al. Study on oxidation ratean disotope fractionation of methane in Bohai Sea sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201707100117
[44] Ng G H C, Bekins B A, Cozzarelli I M, et al. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN[J]. Journal of Contaminant Hydrology, 2014, 164: 1-15. doi: 10.1016/j.jconhyd.2014.04.006
[45] Suthersan S, Koons B, Schnobrich M. Contemporary management of sites with petroleum LNAPL presence[J]. Groundwater Monitoring & Remediation, 2015, 35(1): 23-29.
[46] Ng G H C, Bekins B A, Cozzarelli I M, et al. Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN[J]. Water Resources Research, 2015, 51(6): 4156-4183.
[47] Irianni-Renno M, Akhbari D, Olson M R, et al. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body[J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3347-3360.
[48] Bruckberger M C, Gleeson D B, Bastow T P, et al. Unravelling microbial communities associated with different light non-aqueous phase liquid types undergoing natural source zone depletion processes at a legacy petroleum site[J]. Water, 2021, 13(7): 898.
[49] Kirkman A, Zimbron J. Comments in response to peer reviewed technical note "Application of four measurement techniques to understand natural source zone depletion processes at fouran lnapl site"[J]. Groundwater Monitoring & Remediation, 2021, 41(1): 6-7.
[50] Guo Q, Shi X, Kang X, et al. Evaluation of the benefits of improved permeability estimation on high-resolution characterization of DNAPL distribution in aquifers with low-permeability lenses[J]. Journal of Hydrology, 2021, 603: 126955.
[51] Engelmann C, Lari K S, Schmidt L, et al. Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics[J]. Journal of Hazardous Materials, 2021, 407: 124741.
[52] Van De Ven C J C, Scully K H, Frame M A, et al. Impacts of water table fluctuations on actual and perceived natural source zone depletion rates[J]. Journal of Contaminant Hydrology, 2021, 238: 103771.
[53] Guo Q, Shi X, Kang X, et al. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture[J]. Journal of Contaminant Hydrology, 2021, 241: 103809.
[54] Askarani K K. Thermal monitoring of natural source zone depletion[D]. Colorado: Colorado State University, 2019.
-