中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

过硫酸钠修复土壤中多环芳烃的准确测定

杨清. 过硫酸钠修复土壤中多环芳烃的准确测定[J]. 岩矿测试, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148
引用本文: 杨清. 过硫酸钠修复土壤中多环芳烃的准确测定[J]. 岩矿测试, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148
YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148
Citation: YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148

过硫酸钠修复土壤中多环芳烃的准确测定

  • 基金项目:
    上海市地矿工程院科研基金资助项目(Gky202004)
详细信息
    作者简介: 杨清,硕士,工程师,主要从事环境样品检测与土壤修复项目评估工作。E-mail: zhangkai5938@126.com
  • 中图分类号: O657.63

Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate

  • 多环芳烃(PAHs)是一类具有致癌、致突变、致畸的碳氢化合物,具有较高的辛醇-水分配系数,易被土壤颗粒吸附而影响环境和人体健康。过硫酸钠(Na2S2O8)氧化法是近些年来国内外修复PAHs污染土壤较为常用的方法,但现阶段在测定修复后土壤中PAHs含量、进行土壤修复效果评估时亟待解决的问题是:经该方法修复的土壤,若土壤中残留有过硫酸钠,在样品前处理过程中由于提取温度较高,可能会进一步加速多环芳烃的氧化反应,从而影响土壤中PAHs的准确测定。本文建立了一种在修复后土壤中加入还原剂抗坏血酸,与残留的过硫酸钠反应生成脱氢抗坏血酸,采用索氏提取结合气相色谱-质谱法(GC-MS)同时测定土壤中16种PAHs的方法,PAHs加标回收率为76.2%~110.0%。而修复后土壤若不加还原剂直接进行索氏提取,用GC-MS测定,可能会使部分PAHs及替代物的测定不准确,PAHs加标回收率仅为6.0%~72.4%。通过对比分析表明,在样品提取前加入还原剂,可以有效地消除残留过硫酸钠的影响,提高测定修复后土壤中PAHs含量的准确性。

  • 加载中
  • 图 1  过硫酸钠残留量对替代物回收率的影响

    Figure 1. 

    图 2  过硫酸钠残留量对PAHs回收率的影响

    Figure 2. 

    图 3  加入抗坏血酸对替代物回收率的影响

    Figure 3. 

    图 4  加入抗坏血酸对PAHs回收率的影响

    Figure 4. 

    表 1  不同抗坏血酸加入量对PAHs回收率测定的RSD和t检验值

    Table 1.  RSD value and t value of recoveries of PAHs in different Vitamin C concentration

    PAHs化合物 ①过硫酸钠残留量0.5%+抗坏血酸0.37% ②过硫酸钠残留量1.0%+抗坏血酸0.75% ③过硫酸钠残留量1.5%+抗坏血酸1.10% ④过硫酸钠残留量1.5%+抗坏血酸2.20%
    RSD(%, n=3) t RSD(%, n=3) t RSD(%, n=3) t RSD(%, n=3) t
    0.9 0.448 5.6 0.946 4.5 0.519 1.1 0.829
    苊烯 3.3 1.496 13.5 0.761 3.4 1.348 2.2 0.494
    0.7 0.091 7.1 0.380 3.7 1.113 1.6 0.325
    1.7 0.733 6.2 0.692 2.6 0.714 0.9 0.753
    4.4 1.300 6.8 0.851 2.3 0.748 0.9 0.803
    2.7 1.501 15.9 0.797 2.8 1.760 2.1 0.069
    荧蒽 2.7 0.917 6.6 0.474 1.9 0.507 2.2 1.291
    0.6 1.000 4.0 0.130 4.4 0.620 1.3 0.727
    苯并[a]蒽 2.6 0.204 6.2 0.925 5.1 1.317 3.8 0.602
    0.9 0.878 4.5 0.137 4.4 0.788 2.4 1.005
    苯并[b]荧蒽 2.3 0.439 4.3 0.586 5.3 1.850 2.7 0.153
    苯并[k]荧蒽 3.3 2.764 5.5 2.452 3.2 2.639 5.6 2.614
    苯并[a]芘 6.7 1.749 13.9 1.348 1.2 1.920 3.4 0.327
    茚并[1, 2, 3-cd]芘 0.5 0.138 6.5 0.530 4.0 1.339 4.3 0.260
    二苯并[a, h]蒽 0.5 0.681 7.0 0.236 2.5 1.313 4.1 0.514
    苯并[ghi]苝 0.5 0.402 5.1 0.497 4.1 1.504 4.7 0.250
    下载: 导出CSV

    表 2  实际土壤样品中苯并(a)芘分析结果

    Table 2.  Analytical results of benzoapyrene in actual soil samples

    样品编号 前处理程序 苯并[a]芘
    检测结果(mg/kg) RSD(%, n=3) 加标量(mg/kg) 加标测得量(mg/kg) 回收率(%)
    T1 未加还原剂-索氏提取 0.60 4.7 0.33 0.77 51.5
    预先加入还原剂-索氏提取 0.88 3.4 0.33 1.24 109.0
    T2 未加还原剂-索氏提取 0.22 5.1 0.33 0.35 39.3
    预先加入还原剂-索氏提取 0.42 2.5 0.33 0.66 72.7
    T3 未加还原剂-索氏提取 0.34 6.8 0.33 0.50 48.4
    预先加入还原剂-索氏提取 0.56 5.5 0.33 0.91 103.0
    下载: 导出CSV
  • [1]

    孙书堂, 严倩, 黎宁, 等. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究[J]. 岩矿测试, 2020, 39(3): 408-416. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202002030014

    Sun S T, Yan Q, Li N, et al. In situ self-transforming membrane as solid phase microextraction coating extraction of PAHs in environmental water samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202002030014

    [2]

    Yang J, Qadeer A, Liu M, et al. Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J]. Applied Geochemistry, 2019, 106: 17-25. doi: 10.1016/j.apgeochem.2019.04.023

    [3]

    李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    [4]

    邹杰明, 冯慧, 邹华. 零价铁修复多环芳烃污染土壤的研究[J]. 环境科学与技术, 2021, 44(S1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S1015.htm

    Zou J M, Feng H, Zou H. Remediation of polycyclic aromatic hydrocarbons contaminated soil with zero valent iron[J]. Environmental Science & Technology, 2021, 44(S1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S1015.htm

    [5]

    李丽, 张兴, 王亚军, 等. 过硫酸钠对黄土高原石油类污染土壤的处理[J]. 环境科学与技术, 2020, 43(12): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202012022.htm

    Li L, Zhang X, Wang Y J, et al. Treatment of petroleum hydrocarbons in loess by sodium persulfate[J]. Environmental Science & Technology, 2020, 43(12): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202012022.htm

    [6]

    周佳靖, 柳修楚, 郭瑾, 等. 纳米氧化铁与氧化剂对多环芳烃污染农田土壤修复和蔬菜健康风险的影响[J]. 环境污染与防治, 2021, 43(2): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202102017.htm

    Zhou J J, Liu X C, Guo J, et al. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland[J]. Environmental Pollution & Control, 2021, 43(2): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202102017.htm

    [7]

    Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J]. Ultrasonics Sonochemistry, 2016, 29: 156-162. doi: 10.1016/j.ultsonch.2015.09.008

    [8]

    吴丽颖, 王炳煌, 张圆春, 等. 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(6): 2318-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706052.htm

    Wu L Y, Wang B H, Zhang Y C, et al. Degradation of reactive black 5 (RBK5) by gelatin balls loading iron activating sodium persulfate[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2318-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706052.htm

    [9]

    Liu Y, Lang J, Wang T, et al. Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: Different reactive species comparing with activation by homogenous Fe(Ⅱ)[J]. Environmental Science and Pollution Research, 2018, 25(26): 26394-26404. doi: 10.1007/s11356-018-2637-3

    [10]

    潘栋宇, 侯梅芳, 刘超男, 等. 多环芳烃污染土壤化学修复技术的研究进展[J]. 安全与环境工程, 2018, 25(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201803009.htm

    Pan D Y, Hou M F, Liu C N, et al. Review of chemical remediation technology of polycyclic aromatic hydrocarbons contaminated soil[J]. Safety and Environmental Engineering, 2018, 25(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201803009.htm

    [11]

    侯思颖, 邓一荣, 陆海建, 等. 铁活化过硫酸盐原位修复有机污染土壤研究进展[J]. 环境工程, 2021, 39(4): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202104029.htm

    Hou S Y, Deng Y R, Lu H J, et al. Research progress on iron activated persulfate in situ remediation of organic contaminated soil[J]. Environmental Engineer, 2021, 39(4): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202104029.htm

    [12]

    周婵媛, 蒙眺, 杨春艳, 等. 管内填充磁性碳纳米管固相萃取-气相色谱/质谱法测定环境样品中多环芳烃[J]. 分析试验室, 2021, 40(9): 1015-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202109005.htm

    Zhou C Y, Meng Z, Yang C Y, et al. Solid-phase extraction based in tube filled-magnetic carbon nanotubes coupled with GC-MS for analysis of polycyclic aromatic hydrocarbons in environmental samples[J]. Chinese Journal of Analysis Laboratory, 2021, 40(9): 1015-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202109005.htm

    [13]

    谭华东, 张汇杰, 武春媛. GC-MS结合微量QuEChERS法快速测定土壤中16种多环芳烃[J]. 中国测试, 2020, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202001012.htm

    Tan H D, Zhang H J, Wu C Y. Rapid determination of 16 polycyclic aromatic hydrocarbons in soil by gas chromatography-tandem mass spectrometry coupled with micro-QuEChERS[J]. China Measurement & Test, 2020, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202001012.htm

    [14]

    王翔, 赵南京, 俞志敏, 等. 土壤有机污染物激光诱导荧光光谱检测方法研究进展[J]. 光谱学与光谱分析, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm

    Wang X, Zhao N J, Yu Z M, et al. Detection method progress and development trend of organic pollutants in soil using laser-induced fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm

    [15]

    温海滨, 胡玉玲, 李攻科. 磁性微孔聚合物富集/表面增强拉曼光谱法测定水与土壤中多环芳烃[J]. 分析测试学报, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008

    Wen H B, Hu Y L, Li G K. Determination of polycyclic aromatic hydrocarbons in environmental water and soil samples by magnetic microporous polymer enrichment coupled with surface-enhanced Raman spectroscopy[J]. Journal of Instrumental Analysis, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008

    [16]

    Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials, 2011, 186: 2097-2102. doi: 10.1016/j.jhazmat.2010.12.129

    [17]

    Do S H, Kwon Y J, Kong S H. Effect of metal oxides on the reactivity of persulfate/Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J]. Journal of Hazardous Materials, 2010, 182: 933-936. doi: 10.1016/j.jhazmat.2010.06.068

    [18]

    Ge D, Dong Y, Zhang W, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146

    [19]

    Liu J, Yang Q, Wang D, et al. Enhanced dewaterability of waste activated sludge by Fe(Ⅱ)-activated peroxymonosulfate oxidation[J]. Bioresource Technology, 2016, 206: 134-140. doi: 10.1016/j.biortech.2016.01.088

    [20]

    Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. Ⅰ. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9): 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029

    [21]

    龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201405018.htm

    Long A H, Lei Y, Zhang H. In situ chemical oxidation of organic contaminated soil and groundwater using activated persulfate process[J]. Progress in Chemistry, 2014, 26(5): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201405018.htm

    [22]

    严红林, 左世伟, 孙长宇, 等. 柠檬酸/Fe2+活化过硫酸钠对石油烃污染土壤的修复[J]. 石油化工, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008

    Yan H L, Zuo S W, Sun C Y, et al. Remediation of petroleum hydrocarbon contaminated soil with sodium persulfate activated by citric acid and Fe2+[J]. Petrochemical Technology, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008

    [23]

    肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 345-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201812042.htm

    Xiao P F, Jiang S J. Research progress in remediation of organic contaminated soil by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 345-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201812042.htm

    [24]

    Monteagudo J M, El-Taliawy H, Durán A, et al. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials, 2018, 357: 457-465. doi: 10.1016/j.jhazmat.2018.06.031

    [25]

    Peng H, Zhang W, Liu L, et al. Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil[J]. Chemical Engineering Journal, 2017, 307: 750-755. doi: 10.1016/j.cej.2016.08.129

    [26]

    Zhen G, Lu X, Zhao Y, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(Ⅱ)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116: 259-265. doi: 10.1016/j.biortech.2012.01.170

    [27]

    Tan C, Gao N, Deng Y, et al. Heat-activated persulfate oxidation of diuron in water[J]. Chemical Engineering Journal, 2012, 203: 294-300. doi: 10.1016/j.cej.2012.07.005

    [28]

    Yukselen-Aksoy Y, Reddy K R. Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls[J]. Electrochimica Acta, 2012, 86: 164-169. doi: 10.1016/j.electacta.2012.03.049

    [29]

    徐开泰, 林匡飞, 陆强, 等. 热活化过硫酸钠降解土壤体系中的菲[J]. 环境工程, 2018, 36(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801038.htm

    Xu K T, Lin K F, Lu Q, et al. Degradation of phenanthrene in soil via thermally activated sodium persulfate[J]. Environmental Engineer, 2018, 36(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801038.htm

    [30]

    李永涛, 罗进, 岳东. 热活化过硫酸盐氧化修复柴油污染土壤[J]. 环境污染与防治, 2017, 39(10): 1143-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201710021.htm

    Li Y T, Luo J, Yue D. Thermo activated persulfate oxidation for remediation of diesel oil contaminated soil[J]. Environmental Pollution & Control, 2017, 39(10): 1143-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201710021.htm

    [31]

    戚淑芳, 张杰, 王莹, 等. 以抗坏血酸作还原滴定剂电位滴定法测定铁矿石中全铁[J]. 冶金分析, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015

    Qi S F, Zhang J, Wang Y, et al. Determination of total iron in iron ore by potentiometric titration with ascorbic acid as reducing titrant[J]. Metallurgical Analysis, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015

    [32]

    中国环境监测总站. 环境水质监测质量保证手册[M]. 北京: 化学工业出版, 1989.

    China National Environmental Monitoring Centre. Quality assurance manual for environmental water quality monitoring[M]. Beijing: Chemical Industry Press, 1989.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  2543
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2021-10-13
修回日期:  2021-11-29
录用日期:  2022-01-28
刊出日期:  2022-05-28

目录