中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

应用激光拉曼光谱鉴别桂中铝土矿TiO2同质异象矿物

张永清, 周红英, 耿建珍, 肖志斌, 涂家润, 张然, 叶丽娟. 应用激光拉曼光谱鉴别桂中铝土矿TiO2同质异象矿物[J]. 岩矿测试, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196
引用本文: 张永清, 周红英, 耿建珍, 肖志斌, 涂家润, 张然, 叶丽娟. 应用激光拉曼光谱鉴别桂中铝土矿TiO2同质异象矿物[J]. 岩矿测试, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196
ZHANG Yongqing, ZHOU Hongying, GENG Jianzhen, XIAO Zhibin, TU Jiarun, ZHANG Ran, YE Lijuan. Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196
Citation: ZHANG Yongqing, ZHOU Hongying, GENG Jianzhen, XIAO Zhibin, TU Jiarun, ZHANG Ran, YE Lijuan. Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2022, 41(6): 978-986. doi: 10.15898/j.cnki.11-2131/td.202112070196

应用激光拉曼光谱鉴别桂中铝土矿TiO2同质异象矿物

  • 基金项目:
    国家自然科学基金青年基金项目(41803047)
详细信息
    作者简介: 张永清,硕士,高级工程师,地球化学专业,从事同位素地球化学和地质年代学研究。E-mail: zhangyq823@163.com
  • 中图分类号: P575.1

Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy

  • 金红石、锐钛矿和板钛矿为TiO2的三种同质异象矿物。在进行金红石微区原位U-Pb定年时,通常主要依据电子探针数据、辅以阴极发光图像确定研究矿物为金红石,而电子探针数据和阴极发光图像有时并不能有效地区分金红石、锐钛矿和板钛矿,若用于进行定年的矿物中同时存在三种或其中两种TiO2矿物,获得的年龄可能是混合年龄,无显著地质意义。因此,对TiO2同质异象矿物的快速准确鉴别具有重要意义。本文以桂中铝土矿中TiO2矿物为研究对象,将激光拉曼光谱应用于TiO2同质异象矿物的鉴别,准确识别出桂中铝土矿TiO2矿物中存在四组不同特征的激光拉曼光谱谱线。前三组分别具有锐钛矿、金红石和板钛矿的激光拉曼光谱特征峰;第四组具有两种激光拉曼光谱特征谱线,第一种同时具有锐钛矿的特征峰144、198、397、513、636cm-1和金红石的特征峰442、607cm-1,第二种同时具有锐钛矿的特征峰144cm-1和板钛矿特征峰153、247、325、636cm-1。结果表明:桂中铝土矿TiO2矿物中除金红石、锐钛矿和板钛矿外,还存在同时具有两种矿物结构特征的中间矿物。分析认为研究区可能经历了后期的区域变质作用,导致TiO2同质异象矿物发生相变,这类中间矿物则记录了相变的过程。本文应用激光拉曼光谱快速准确地鉴别出桂中铝土矿TiO2同质异象矿物,为金红石微区原位U-Pb定年研究中矿物的鉴别提供了新思路。

  • 加载中
  • 图 1  金红石、锐钛矿和板钛矿的晶体结构示意图

    Figure 1. 

    图 2  桂中铝土矿中锐钛矿、金红石及板钛矿激光拉曼光谱图(锐钛矿、金红石及板钛矿激光拉曼光谱标准曲线据Meinhold, 2010[27])

    Figure 2. 

    图 3  桂中铝土矿第四组TiO2矿物激光拉曼光谱图(锐钛矿、金红石及板钛矿激光拉曼光谱标准曲线据Meinhold, 2010[27])

    Figure 3. 

    图 4  桂中铝土矿TiO2同质异象矿物透射光及阴极发光图像

    Figure 4. 

    表 1  桂中铝土矿TiO2同质异象矿物电子探针分析结果

    Table 1.  Electron microprobe analyses of TiO2 polymorphs from the bauxite deposit in central Guangxi

    测点 锐钛矿(%)
    K2O UO2 CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO ThO2 PbO Nb2O5 P2O5 Ta2O5 总计
    1 0.02 0.08 0.10 98.84 0.03 0.00 0.21 0.31 0.00 0.02 0.18 0.01 0.00 0.27 0.00 0.14 100.20
    2 0.00 0.00 0.08 98.55 0.01 0.00 0.09 0.22 0.00 0.02 0.14 0.02 0.00 0.14 0.00 0.01 99.28
    3 0.01 0.02 0.02 98.07 0.00 0.01 0.81 0.10 0.00 0.00 0.09 0.00 0.00 0.15 0.00 0.00 99.27
    4 0.01 0.00 0.05 98.66 0.03 0.00 0.04 0.17 0.01 0.01 0.15 0.02 0.00 0.18 0.00 0.00 99.35
    5 0.01 0.00 0.03 99.39 0.00 0.00 0.05 0.02 0.02 0.00 0.04 0.00 0.01 0.15 0.00 0.03 99.74
    6 0.00 0.02 0.09 99.48 0.00 0.00 0.02 0.01 0.05 0.00 0.15 0.00 0.00 0.23 0.01 0.11 100.20
    测点 金红石(%)
    K2O UO2 CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO ThO2 PbO Nb2O5 P2O5 Ta2O5 总计
    1 0.00 0.09 0.00 97.57 0.01 0.01 0.15 0.21 0.06 0.00 0.61 0.05 0.00 0.16 0.00 0.04 98.96
    2 0.00 0.00 0.01 98.18 0.00 0.00 0.18 0.10 0.03 0.01 0.42 0.00 0.00 0.25 0.00 0.00 99.17
    3 0.23 0.00 0.04 97.76 0.00 0.07 0.66 1.09 0.03 0.01 0.19 0.04 0.00 0.18 0.00 0.00 100.30
    4 0.02 0.05 0.01 99.15 0.00 0.00 0.01 0.00 0.04 0.00 0.21 0.01 0.00 0.07 0.00 0.09 99.66
    5 0.00 0.00 0.01 99.22 0.01 0.00 0.03 0.02 0.00 0.00 0.48 0.01 0.00 0.02 0.00 0.00 99.80
    6 0.02 0.02 0.00 98.17 0.00 0.01 0.05 0.00 0.15 0.00 0.58 0.05 0.00 0.99 0.01 0.09 100.10
    测点 板钛矿(%)
    K2O UO2 CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO ThO2 PbO Nb2O5 P2O5 Ta2O5 总计
    1 0.00 0.00 0.00 98.40 0.00 0.00 0.05 0.01 0.04 0.01 0.16 0.00 0.00 0.91 0.02 0.07 99.67
    2 0.00 0.00 0.04 98.48 0.00 0.02 0.03 0.04 0.00 0.00 0.29 0.00 0.01 0.58 0.00 0.08 99.55
    3 0.00 0.04 0.01 99.82 0.03 0.00 0.03 0.00 0.03 0.00 0.09 0.01 0.00 0.09 0.00 0.00 100.10
    测点 第四组矿物(%)
    K2O UO2 CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO ThO2 PbO Nb2O5 P2O5 Ta2O5 总计
    1 0.01 0.00 0.03 99.97 0.00 0.00 0.03 0.00 0.16 0.00 0.17 0.00 0.00 0.00 0.00 0.00 100.40
    2 0.00 0.00 0.12 98.16 0.02 0.02 0.28 0.50 0.00 0.04 0.18 0.00 0.00 0.41 0.00 0.00 99.70
    下载: 导出CSV
  • [1]

    张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101130005

    Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101130005

    [2]

    周雄, 周玉, 孙宝伟, 等. 四川甲基卡稀有金属矿床134号脉锡石U-Pb定年与地质意义[J]. 岩矿测试, 2021, 40(1): 156-164. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060006

    Zhou X, Zhou Y, Sun B W, et al. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances[J]. Rock and Mineral Analysis, 2021, 40(1): 156-164. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060006

    [3]

    Dong Y, Ge W C, Yang H, et al. Geochemical and SIMS U-Pb rutile and LA-ICP-MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang ocean from amphibolites of the Heilongjiang complex, NE China[J]. Gondwana Research, 2019, 69: 25-44. doi: 10.1016/j.gr.2018.11.012

    [4]

    Schmitt A K, Zack T, Kooijman E, et al. U-Pb ages of rare rutile inclusions in diamond indicate entrapment synchronous with kimberlite formation[J]. Lithos, 2019, 350-351: 105251. doi: 10.1016/j.lithos.2019.105251

    [5]

    许康康, 刘晓阳, 孙凯, 等. 坦桑尼亚乌本迪带内花岗岩类的LA-MC-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质调查与研究, 2020, 43(1): 55-62. doi: 10.3969/j.issn.1672-4135.2020.01.006

    Xu K K, Liu X Y, Sun K, et al. Zircon U-Pb LA-MC-ICP-MS dating and geological significance of the granitoids in the Ubendian belt, southwestern Tanzania[J]. Geological Survey and Research, 2020, 43(1): 55-62. doi: 10.3969/j.issn.1672-4135.2020.01.006

    [6]

    田辉, 李怀坤, 张健, 等. 天津蓟州东水厂中元古代高于庄组凝灰岩锆石SHRIMP U-Pb年龄——对中元古代生物-环境事件的制约[J]. 地质调查与研究, 2020, 43(2): 153-160. doi: 10.3969/j.issn.1672-4135.2020.02.009

    Tian H, Li H K, Zhang J, et al. SHRIMP U-Pb dating for zircons from the tuff bed of the Mesoproterozoic Gaoyuzhuang Formation in Jixian Section, Tianjin, and its constraints on the Mesoproterozoic bio-environmental events[J]. Geological Survey and Research, 2020, 43(2): 153-160. doi: 10.3969/j.issn.1672-4135.2020.02.009

    [7]

    黄新鹏. 福建霞浦大湾钼铍矿区碱长花岗岩LA-ICP-MS锆石U-Pb测年研究[J]. 岩矿测试, 2018, 37(5): 572-579. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710160165

    Huang X P. LA-ICP-MS zircon U-Pb dating of alkali feldspar granites from the Dawan Mo-Be deposit, Xiapu, Fujian Province[J]. Rock and Mineral Analysis, 2018, 37(5): 572-579. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710160165

    [8]

    张勇, 魏华, 陆太进, 等. 新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J]. 岩矿测试, 2018, 37(6): 695-704. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801170007

    Zhang Y, Wei H, Lu T J, et al. The genesis and LA-ICP-MS zircon ages of the Omixia nephrite deposit, Xinjiang, China[J]. Rock and Mineral Analysis, 2018, 37(6): 695-704. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801170007

    [9]

    郑奋, 刘琰, 张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究[J]. 岩矿测试, 2019, 38(4): 438-448. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201807310089

    Zheng F, Liu Y, Zhang H Q. The petrogeochemistry and zircon U-Pb age of nephrith place deposit in Xiuyan, Liaoning[J]. Rock and Mineral Analysis, 2019, 38(4): 438-448. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201807310089

    [10]

    涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm

    Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm

    [11]

    李广旭, 曹汇, 王达, 等. 胶北粉子山群和荆山群三叠纪变质变形记录: 金红石U-Pb年代学证据[J]. 地质学报, 2016, 90(11): 3246-3258. doi: 10.3969/j.issn.0001-5717.2016.11.017

    Li G X, Cao H, Wang D, et al. Deformation and metamorphism of triassic fenzishan group and Jianshan Group in the Jianbei massif: Evidence from rutile U-Pb geochronology[J]. Acta Geologica Sinica, 2016, 90(11): 3246-3258. doi: 10.3969/j.issn.0001-5717.2016.11.017

    [12]

    李秋立, 赵磊, 张艳斌, 等. 朝鲜甑山"群"变质岩中锆石-榍石-金红石U-Pb体系: 古元古代—中生代构造-热事件记录[J]. 岩石学报, 2016, 32(10): 3019-3032. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201610008.htm

    Li Q L, Zhao L, Zhang Y B, et al. Zircon-titanite-rutile U-Pb system metamorphic rocks of Junshan "group" in Korea: Implication of tectno-thermal events from paleoproterozic to mesozoic[J]. Acta Petrologica Sinica, 2016, 32(10): 3019-3032. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201610008.htm

    [13]

    熊伯琴, 许文良, 李秋立, 等. 徐淮地区早白垩世adakitic岩石中榴辉岩类捕虏体中金红石的SIMS U-Pb定年: 对华北克拉通东部陆壳加厚时间的制约[J]. 中国科学: 地球科学, 2015, 45(5): 553-560. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201505001.htm

    Xiong B Q, Xu W L, Li Q L, et al. SIMS U-Pb dating of rutile within eclogitic xenoliths in the early Cretaceous adakitic rocks of the Xuzhou—Huaibei area, China: Constraints on the timing of crustal thickening on the eastern North China Craton[J]. Science China: Earth Science, 2015, 45(5): 553-560. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201505001.htm

    [14]

    张贵宾, 张立飞, 宁远煜, 等. 柴北缘超高压变质带的冷却历史: 来自副片麻岩中锆石、金红石的U-Pb年代学和温度信息[J]. 岩石学报, 2014, 30(10): 2835-2842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410004.htm

    Zhang G B, Zhang L F, Ning Y Y, et al. Cooling history for North Qaidam UHPM belt: Constraints from zircon, rutile U-Pb dating and thermometry in paragneiss[J]. Acta Petrologica Sinica, 2014, 30(10): 2835-2842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410004.htm

    [15]

    赵一鸣, 李大新, 韩景仪, 等. 内蒙古羊蹄子山—磨石山钛铁矿、金红石和钛铁矿的矿物学特征[J]. 矿床地质, 2008, 27(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200804003.htm

    Zhao Y M, Li D X, Han J Y, et al. Mineralogical characteristics of anatase, rutile and ilmenite in Yangtizashan—Moshishan titanium ore deposit, Inner Mongolia[J]. Mineral Deposits, 2008, 27(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200804003.htm

    [16]

    赵一鸣, 李大新, 吴良士, 等. 内蒙古磨石山沉积型变质型钛铁矿矿床: 一个大型新类型钛矿床的发现、勘查和研究[J]. 地质学报, 2012, 86(9): 1350-1366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201209005.htm

    Zhao Y M, Li D X, Wu L S, et al. Moshishan metamorphosed sedimentary antase deposit: Discovery, exploration, and study of a new genetic type large titanium deposit[J]. Acta Geologica Sinica, 2012, 86(9): 1350-1366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201209005.htm

    [17]

    肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学"信息库"[J]. 岩石学报, 2011, 27(2): 398-413. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102005.htm

    Xiao Y L, Huang J, Liu L, et al. Rutile: An important "reservoir" for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-413. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102005.htm

    [18]

    Force E R. Geology of titanium-mineral deposits[J]. The Geological Society of America, 1991, 259: 1-112.

    [19]

    Liu X F, Wang Q F, Deng J, et al. Mineralogical and geochemical investigations of the Dajia salento-type bauxite deposits, western Guangxi, China[J]. Journal of Geochemical Exploration, 2010, 105: 137-152.

    [20]

    Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials Science, 2011, 46: 855-874.

    [21]

    Dudek K, Jones F, Radomirovic T, et al. The effect of anatase, rutile and sodium titanate on the dissolution of boehmite and gibbsite at 90℃[J]. International Journal of Mineral Processing, 2009, 93: 135-140.

    [22]

    Goresy A E, Chen M, Gillet P, et al. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the ries crater in Germany[J]. Earth and Planetary Science Letters, 2001, 192: 485-495.

    [23]

    杜谷, 王坤阳, 冉敬, 等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(5): 625-633. http://www.ykcs.ac.cn/cn/article/id/3980f0fc-b8e1-4632-be00-cf45aba72902

    Du G, Wang K Y, Ran J, et al. Application of IR/SEM and other modern instrument for mineral identification[J]. Rock and Mineral Analysis, 2014, 33(5): 625-633. http://www.ykcs.ac.cn/cn/article/id/3980f0fc-b8e1-4632-be00-cf45aba72902

    [24]

    范光, 葛祥坤. 微区X射线衍射在矿物鉴定中的应用实例[J]. 世界核地质科学, 2010, 27(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201002008.htm

    Fan G, Ge X K. Application example of micro X-ray diffraction in mineral identification[J]. World Nuclear Geoscience, 2010, 27(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201002008.htm

    [25]

    Diebold U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5-8): 53-229.

    [26]

    Landmann M, Raulse E, Schmidt W G. The electronic structure and optical response of rutile, anatase and brookite TiO2[J]. Journal of Physics: Condensed Matter, 2012, 24: 195503.

    [27]

    Meinhold G. Rutile and its applications in Earth sciences[J]. Earth-Science Reviews, 2010, 102: 1-28.

    [28]

    Hu Y, Tsai H L, Huang C L. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles[J]. Journal of European Ceramic Society, 2003, 23: 691-696.

    [29]

    Huberty J, Xu H. Kinetics study on phase transformation from titania polymorph brookite to rutile[J]. Journal of Solid State Chemistry, 2008, 181: 508-514.

    [30]

    Zhang M L, Chen T D, Wang Y J. Insights into TiO2 polymorphs: Highly selective synthesis, phase transition, and their polymorph-dependent properties[J]. Royal Society of Chemistry Advances, 2017, 7: 52755-52761.

    [31]

    Gamaletsos P N, Godelitsas A, Kasama T. Nano-mineralogy and geochemistry of high-grade diasporic karst-type bauxite from Parnassos—Ghiona mines, Greece[J]. Ore Geology Reviews, 2017, 84: 228-244.

    [32]

    Zhang L, Park C Y, Wang G H, et al. Phase transformation processes in karst-type bauxite deposit from Yunnan area, China[J]. Ore Geology Reviews, 2017, 89: 407-420.

    [33]

    Hebert E, Gauthier M. Unconventional rutile deposits in the Quebec applialachians: Product of hypogene enrichment during low-grade metamorphism[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2007, 102(2): 319-326.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  2511
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2021-12-07
修回日期:  2022-02-22
录用日期:  2022-03-13
刊出日期:  2022-11-28

目录