Determination of Redox Potential of Sandstone-type Uranium Ore by Potential Drop Methods of Potassium Dichromate and Potassium Permanganate
-
摘要:
氧化还原电位是一个体系中所有物质混合氧化还原电位的数量指标,反映了整个体系氧化还原能力的相对强弱,而砂岩型铀矿的氧化还原电位控制着铀等变价元素的地球化学行为,对准确圈出铀富集层位具有重要意义。电位落差法借助于氧化剂溶液测定样品的氧化还原容量,电位差的大小能准确反映出砂岩型铀矿样品所含还原组分的还原能力。本文以重铬酸钾和高锰酸钾作为氧化剂,探讨了应用这两种氧化剂的电位落差法测定砂岩型铀矿氧化还原电位(ΔEh)的特点。系统研究了两种方法溶液介质浓度、氧化剂浓度、平衡电位时间、样品浸泡时间和样品与氧化剂溶液的固液比对ΔEh测定的影响。按照两种方法最优条件测定8个砂岩型铀矿样品,重铬酸钾法ΔEh值在15~118mV之间,相对标准偏差为2.50%~7.44%;高锰酸钾法ΔEh值在45~89mV之间,相对标准偏差为0.89%~1.42%,两种方法在测量8个砂岩型铀矿样品ΔEh的相对水平方面具有一致性,相关系数为0.9882。研究表明重铬酸钾电位落差法的ΔEh更分散跨度更大,能更直观地看出样品间还原能力的差别;高锰酸钾电位落差法的ΔEh稳定性更好。两种电位落差法测量砂岩型铀矿的ΔEh数值可用于其氧化还原分带的划分。
Abstract:BACKGROUND The redox potential is a quantitative indicator of the mixed redox potential of all substances in a system, which reflects the relative strength of the redox capacity of the whole system. It is of great significance to delineate the uranium enrichment horizon. The redox potential of sandstone-type uranium deposits controls the geochemical behavior of uranium and other variable valence elements, and is of great significance for accurately delineating uranium-enriched horizons. The potential difference method is used to measure the redox capacity of the sample by means of the oxidant solution, and the magnitude of the potential difference can accurately reflect the reducing ability of the reducing components in the sandstone-type uranium ore sample.
OBJECTIVES To compare the two methods for the determination of the redox potential (ΔEh) of sandstone-type uranium ores.
METHODS ΔEh of sandstone-type uranium ores was determined by two potential drop methods using potassium dichromate and potassium permanganate as oxidants. The effects of the solution medium concentration, oxidant concentration, equilibrium potential time, sample immersion time, and solid-liquid ratio of sample to oxidant solution on the determination of ΔEh were systematically studied. According to the optimal conditions of the two methods, 8 sandstone-type uranium samples were measured.
RESULTS The ΔEh of the potassium dichromate method was between 15mV and 118mV, and the relative standard deviation was between 2.50% and 7.44%. The ΔEh of the potassium permanganate method was between 45mV and 89mV, with the relative standard deviation of 0.89%-1.42%. The two methods had significant consistency in determining the relative level of ΔEh of 8 sandstone-type uranium ore samples, and the correlation coefficient was 0.9882.
CONCLUSIONS The ΔEh of the potassium dichromate potential drop method is more dispersed with a large range, and the difference in reducing ability between samples can be identified more intuitively. The ΔEh of the potassium permanganate potential drop method is more stable. The ΔEh values of sandstone-type uranium deposits measured by two potential drop methods can be used for the division of redox zoning.
-
表 1 不同浓度重铬酸钾条件下重铬酸钾及样品-重铬酸钾浸泡液的电位值
Table 1. Eh values of potassium dichromate and sample-potassium dichromate immersion solution under different concentrations of potassium dichromate
1/6K2Cr2O7溶液浓度(mol/L) 重铬酸钾Eh(mV) 样品-重铬酸钾浸泡液Eh(mV) 落差电位ΔEh(mV) 样品1 样品2 样品3 样品1 样品2 样品3 0.01 892 470 445 727 422 447 165 0.05 940 838 880 861 102 60 79 0.10 982 859 935 879 127 51 107 0.15 990 855 931 879 129 53 105 0.20 983 865 942 886 118 41 97 表 2 不同浓度氢氧化钾条件下高锰酸钾及样品-高锰酸钾浸泡液的电位值
Table 2. Eh values of potassium permanganate and sample-potassium permanganate immersion solution under different concentrations of potassium hydroxide
测定溶液 氢氧化钾浓度(×10-3) 0.0 0.5 1.0 1.5 2.0 4.0 6.0 10.0 0.10mol/L 1/3KMnO4Eh(mV) 678 483 482 477 476 476 474 473 砂岩型铀矿浸泡液Eh(mV) 661 442 424 423 421 422 420 418 落差电位ΔEh(mV) 14 41 58 54 55 54 54 55 表 3 不同平衡电位时间下溶液的电位值
Table 3. Eh values of solution at different equilibrium potential time
测定溶液 Eh(mV) 0min 5min 10min 15min 20min 25min 30min 硫酸亚铁铵-硫酸铁铵标准溶液 402 428 427 430 430 427 430 重铬酸钾溶液 890 936 992 985 990 989 993 砂岩型铀矿重铬酸钾浸泡液 782 810 829 844 845 847 850 高锰酸钾溶液 526 481 481 480 479 481 483 砂岩型铀矿高锰酸钾浸泡液 463 425 424 423 426 428 427 表 4 不同浸泡时间和固液比下两种方法的ΔEh值
Table 4. Eh values of the two methods under different immersion time and solid-liquid ratio
浸泡时间(min) 重铬酸钾法ΔEh(mV) 高锰酸钾法ΔEh(mV) 样品1 样品2 样品3 样品1 样品2 样品3 30 106 42 88 65 44 87 60 121 50 100 67 42 89 90 125 49 101 69 45 85 120 123 47 103 68 47 86 180 122 52 102 66 44 88 300 128 49 104 64 48 90 固液比(g/mL) 重铬酸钾法ΔEh(mV) 高锰酸钾法ΔEh(mV) 样品1 样品2 样品3 样品1 样品2 样品3 0.5∶50 78 19 47 67 26 51 1.0∶50 96 28 76 87 37 67 1.5∶50 115 40 92 92 39 71 2.0∶50 124 48 104 97 42 75 2.5∶50 136 63 110 101 44 79 3.0∶50 139 85 117 103 45 82 5.0∶50 169 113 136 126 52 92 表 5 两种方法测量砂岩型铀矿样品的ΔEh值
Table 5. ΔEh values of sandstone-type uranium ore samples with the two methods
样品编号 重铬酸钾法 高锰酸钾法 ΔEh(mV) RSD(%) ΔEh(mV) RSD(%) L002 15 2.94 45 0.96 L003 26 2.50 54 1.12 L004 44 2.75 62 1.32 L005 43 3.56 61 0.97 L006 58 6.60 68 0.89 L007 90 5.38 77 1.08 L008 118 7.44 89 1.27 L009 105 3.32 82 1.42 表 6 氧化还原环境和高锰酸钾电位落差法氧化还原分带的判断
Table 6. Judgment of redox environment and redox zoning by potassium permanganate potential drop method
样品编号 Fe3+/Fe2+ 氧化还原环境 ΔEh(mV) 氧化还原分带 Q001 2.02 氧化环境 21 氧化岩石带 L003 1.07 弱氧化环境 40 氧化还原过渡带 L006 0.90 弱还原环境 50 还原岩石带 L008 0.27 还原环境 69 强还原带 -
[1] 金若时, 张成江, 冯晓曦, 等. 流体混合对砂岩型铀矿成矿作用的影响[J]. 地质通报, 2014, 33(2-3): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2014Z1025.htm
Jin R S, Zhang C J, Feng X X, et al. The influence of fluid mixing on the mineralization of sandstone type uranium deposits[J]. Geological Bulletin of China, 2014, 33(2-3): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2014Z1025.htm
[2] 付勇, 魏帅超, 金若时, 等. 我国砂岩型铀矿分布特征研究现状及存在问题[J]. 地质学报, 2016, 90(12): 3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018
Fu Y, Wei S C, Jin R S, et al. Current status and existing problems of China's sandstone-type uranium deposits[J]. Acta Geologica Sinica, 2016, 90(12): 3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018
[3] 刘武生, 赵兴齐, 史清平, 等. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702006.htm
Liu W S, Zhao X Q, Shi Q P, et al. Research on relationship of oil-gas and sandstone-type uranium mineralization of northern China[J]. Geology in China, 2017, 44(2): 279-287. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702006.htm
[4] 刘汉彬, 李子颖, 秦明宽, 等. 鄂尔多斯盆地北部砂岩型铀矿地球化学研究进展[J]. 地学前缘, 2012, 19(3): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203017.htm
Liu H B, Li Z Y, Qin M K, et al. Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203017.htm
[5] 金若时, 滕雪明. 中国北方砂岩型铀矿大规模成矿作用[J]. 华北地质, 2022, 45(1): 42-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202201003.htm
Jin R S, Teng X M. Large scale sandstone-type uranium mineralization in northern China[J]. North China Geology, 2022, 45(1): 42-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202201003.htm
[6] 孙占学, 马文洁, 刘亚洁, 等. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225. doi: 10.13745/j.esf.sf.2021.2.11
Sun Z X, Ma W J, Liu Y J, et al. Research progress on groundwater contamination and remediation in in situ leaching uranium mines[J]. Earth Science Frontiers, 2021, 28(5): 215-225. doi: 10.13745/j.esf.sf.2021.2.11
[7] 李子颖, 方锡珩, 陈安平, 等. 鄂尔多斯盆地北部砂岩型铀矿目标层灰绿色砂岩成因[J]. 中国科学(地球科学), 2007, 37(增刊): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1015.htm
Li Z Y, Fang X H, Chen A P, et al. Origin of grey-green sandstones in the target layer of sandstone-type uranium deposits in the northern Ordos Basin[J]. Science in China (Earth Science), 2007, 37(Supplement): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1015.htm
[8] 王琳. 地浸砂岩型铀矿钻探施工技术[J]. 现代矿业, 2021(4): 223-225. doi: 10.3969/j.issn.1674-6082.2021.04.057
Wang L. Drilling construction technology for in-situ leaching sandstone-type uranium deposit[J]. Modern Mining, 2021(4): 223-225. doi: 10.3969/j.issn.1674-6082.2021.04.057
[9] 苗培森, 陈印, 程银行, 等. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 2020, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm
Miao P S, Chen Y, Cheng Y H, et al. New deep exploration discoveries of sandstone-type uranium deposits in North China[J]. Geotectonica et Metallogenia, 2020, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm
[10] 原渊, 苏学斌, 李建华, 等. 世界地浸采铀矿山生产现状与进展[J]. 中国矿业, 2018, 27(1): 59-61.
Yuan Y, Su X B, Li J H, et al. Production status and development of the world in-situ leaching of uranium mines[J]. China Mining Magazine, 2018, 27(1): 59-61.
[11] 吉宏斌, 阳奕汉, 孙占学, 等. 地浸采铀过程中的矿层解堵增渗技术及现场应用[J]. 湿法冶金, 2017, 36(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201702013.htm
Ji H B, Yang Y H, Sun Z X, et al. Technology on removing blockage and increasing permeability of ore layer and its production application[J]. Hydrometallurgy of China, 2017, 36(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201702013.htm
[12] 袁富蕴, 刘峰. 测定电位差圈定火山岩富铀层位[J]. 四川大学学报(工程科学版), 2000, 32(5): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200005007.htm
Yuan F Y, Liu F. Searching for rich uranium layers of volcanic rocks by measuring potential difference[J]. Journal of Sichuan University (Engineering Science Edition), 2000, 32(5): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200005007.htm
[13] 孙占学, 刘金辉, 朱永刚, 等. 砂岩铀矿成矿过程与氧化还原分带: 铀系不平衡证据[J]. 地球科学——中国地质大学学报, 2004, 29(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402016.htm
Sun Z X, Liu J H, Zhu Y G, et al. Ore-forming process and redox zoning of sandstone-type U deposits: Evidencefrom U series disequilibrium[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402016.htm
[14] 张卫民, 刘金辉, 李学礼, 等. 水岩体系Eh-pH法在砂岩型铀矿层间氧化带划分中的应用——以新疆伊犁盆地512铀矿床为例[J]. 地球学报, 2003, 24(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200301014.htm
Zhang W M, Liu J H, Li X L, et al. Application of the water-rock system Eh-pH method to the division of the interlayer oxidation zone in the sandstone type uranium ore[J]. Acta Geosicientia Sinica, 2003, 24(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200301014.htm
[15] 宋洪柱, 王东东, 刘建强, 等. 东胜矿区深部直罗组氧化还原环境与砂岩型铀矿特征[J]. 中国煤炭地质, 2015, 27(7): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201507013.htm
Song H Z, Wang D D, Liu J Q, et al. Zhiluo Formation redox environment and sandstone-type uranium deposit characteristics in deep part Dongsheng mining area[J]. Goal Geology of China, 2015, 27(7): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201507013.htm
[16] Christophe B, Liu X D, Yan Z B, et al. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China[J]. Ore Geology Reviews, 2017, 82(4): 108-129.
[17] Cumberland S A, Douglas G, Grice K, et al. Uraniummobility in organic matter-rich sediments: A review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159(5): 160-185.
[18] 张玉燕, 刘红旭, 修小茜. 我国北西部地区层间氧化带砂岩型铀矿床微生物与铀成矿作用研究初探[J]. 地质学报, 2016, 90(12): 3508-3518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612017.htm
Zhang Y Y, Liu H X, Xiu X Q. Relationship between micro-organisms and uranium metallogeny of the interlayer oxidation zone sandstone-type uranium deposits in NW China[J]. Acta Geologica Sinica, 2016, 90(12): 3508-3518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612017.htm
[19] Shamim A, Yang X Y, Franco P. Sandstone type uranium deposits in the Ordos Basin, northwest China: A case study and an overview[J]. Journal of Asian Earth Sciences, 2017, 146(9): 367-382.
[20] 张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194
Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194
[21] 向交, 徐丽萍, 李和平, 等. 氧化还原电位的研究及应用[J]. 地球与环境, 2014, 42(3): 430-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201403024.htm
Xiang J, Xu L P, Li H P, et al. Research on and application of oxidation-reduction potential[J]. Earth and Environment, 2014, 42(3): 430-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201403024.htm
[22] 洪妍, 郭秋梅, 董铁有, 等. ORP的测量及数显ORP标定的原理[J]. 河南科技大学学报(自然科学版), 2006, 27(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX200601004.htm
Hong Y, Guo Q M, Dong T Y, et al. ORP measuring mechanism and calibration standards and principles for digital ORP meters[J]. Journal of Henan University of Science and Technology (Natural Science), 2006, 27(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX200601004.htm
[23] 王爱军, 石超英. 去极化方法测定海水的氧化还原电位初探[J]. 海洋技术, 2010, 29(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201002031.htm
Wang A J, Shi C Y. Primary study on the seawater ORP by depolarization curve method[J]. Ocean Technology, 2010, 29(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201002031.htm
[24] 王媛, 李铁龙, 刘大喜, 等. 电位测定法测海水氧化还原电位的不确定度评定[J]. 南开大学学报(自然科学版), 2010, 29(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201201029.htm
Wang Y, Li T L, Liu D X, et al. Evaluation on uncertainty of measurement for standard solutions of oxidation-reduction potential[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2010, 29(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201201029.htm
[25] 王娜, 王家松, 曾江萍, 等. 电位落差法测定砂岩型铀矿氧化还原电位初探[J]. 地质调查与研究, 2019, 42(4): 267-270. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904007.htm
Wang N, Wang J S, Zeng J P, et al. Primary study on oxidation-reduction potential of sandstone-type uranium deposit by measuring potential difference[J]. Geologycal Survey and Research, 2019, 42(4): 267-270. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904007.htm
[26] 王剑锋. 氧化还原电位法的原理和测定方法[J]. 地质与勘探, 1981, 2(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198103007.htm
Wang J F. Principle and measurement method of oxidation-reduction potential method[J]. Geology and Exploration, 1981, 2(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198103007.htm
[27] 吴金浩, 刘桂英, 王年斌, 等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 2012, 30(2): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201202015.htm
Wu J H, Liu G Y, Wang N B, et al. The Eh in surface sediments in the northern of Liaodong Bay and its main influencing factors[J]. Acta Sedimentologica Sinica, 2012, 30(2): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201202015.htm
[28] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm
Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils: A review[J]. Research of Environmental Sciences, 2018, 31(10): 1669-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm
[29] 余桂梁. 非碳酸盐岩样氧化还原电位的测定法[J]. 铀矿地质, 1992(1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199201012.htm
Yu G L. A method for the determination of redox potential of non-carbonate rock samples[J]. Uranium Geology, 1992(1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199201012.htm
[30] 闵洁. 氧化还原电位测定仪测得值的不确定度分析[J]. 计量与测试技术, 2019, 46(4): 112-113. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201904040.htm
Min J. Uncertainty evaluation of measurement result of oxidation-reduction potential meter[J]. Metrology & Measurement Technique, 2019, 46(4): 112-113. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS201904040.htm
[31] 刘筱雪, 方帷, 李晓, 等. 氧化还原电位去极化法及铂电极直接测定法对比研究[J]. 分析科学学报, 2017, 33(6): 851-854. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201706021.htm
Liu X X, Fang W, Li X, et al. Comparative study of the depolarization curve method and platinum electrode direct determination method[J]. Journal of Analytical Science, 2017, 33(6): 851-854. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201706021.htm
[32] 张松豹, 曹月明. 沉积型赤铁矿、菱铁矿和黄铁矿氧化还原电位测量及其地球化学意义[J]. 中国矿业大学学报, 1992, 21(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD199202007.htm
Zhang S B, Cao Y M. Measurement of redox potential of sedimentary hematite, siderite and ryrite and its geochemical significance[J]. Journal of China University of Mining & Technology, 1992, 21(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD199202007.htm
[33] 夏建明, 王恩德, 赵纯福, 等. 弓长岭富铁矿氧化还原环境的形成机制[J]. 东北大学学报(自然科学版), 2011, 32(11): 1643-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201111030.htm
Xia J M, Wang E D, Zhao C F, et al. The formation mechanism of the redox environment in the rich iron deposits of Gongchangling[J]. Journal of Northeastern University(Natural Science), 2011, 32(11): 1643-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201111030.htm
[34] 马景治, 王峰, 冯莉, 等. 重铬酸钾滴定法测定铁矿石中亚铁含量方法的改进[J]. 中国无机分析化学, 2017, 7(1): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201701010.htm
Ma J Z, Wang F, Feng L, et al. Method improvement for determination of ferrous iron in iron ore by potassium dichromate titrmetry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(1): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201701010.htm
[35] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706280113
Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706280113
[36] 夏传波, 成学海, 张会堂, 等. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J]. 岩矿测试, 2018, 37(1): 36-42. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201610260197
Xia C H, Cheng X H, Zhang H T, et al. Determination of twelve major and minor elements in tourmaline by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201610260197