中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银

刘跃, 林冬, 王记鲁, 李静, 王鑫. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017-1028. doi: 10.15898/j.cnki.11-2131/td.202112230206
引用本文: 刘跃, 林冬, 王记鲁, 李静, 王鑫. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017-1028. doi: 10.15898/j.cnki.11-2131/td.202112230206
LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017-1028. doi: 10.15898/j.cnki.11-2131/td.202112230206
Citation: LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017-1028. doi: 10.15898/j.cnki.11-2131/td.202112230206

四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银

  • 基金项目:
    生态环境部标准编制项目[2018-4]
详细信息
    作者简介: 刘跃,硕士,工程师,主要从事环境监测及无机元素分析工作。E-mail: lymolei@163.com
  • 中图分类号: O657.63;O614.122

Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes

  • 由于受到铌、锆的质谱干扰,使用电感耦合等离子体质谱法(ICP-MS)很难准确测定土壤和水系沉积物中的银。本文采用电感耦合等离子体串联质谱法(ICP-MS/MS),通过研究93Nb16O+91Zr16OH2+92Zr16OH+109Ag+在氦气、氧气和氨气中质谱信号变化,探讨不同碰撞/反应模式的干扰消除能力和消除机理。实验采用盐酸-硝酸-氢氟酸-高氯酸消解样品,选用氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式测定土壤和水系沉积物中的银含量。结果表明:在优化池气体流速后,四种模式下铌、锆对银的干扰程度分别降低20、1500、1500和2000多倍;方法检出限分别为0.005mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg;准确度和精密度采用国家标准物质验证,测定值和标准值的相对误差分别在-1.4%~84.3%、-7.6%~7.2%、-15.0%~10.0%和-12.5%~8.6%之间,相对标准偏差(RSD)分别在1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和0.7%~8.2%之间。氦气MS/MS模式消除干扰能力一般,仅适合测定铌、锆干扰较轻的样品;氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式消除质谱干扰能力较强,可用于土壤和水系沉积物中痕量银的测定。与行业标准DZ/T 0279.11—2016相比,这三种方法检出限更低、测定范围更宽,并可实现多元素同时测定。

  • 加载中
  • 图 1  1μg/L银溶液(a)、1mg/L铌标准溶液(b)和10mg/L锆溶液(c)在不同模式下的主要产物离子和信号强度

    Figure 1. 

    图 2  (a) 氦气MS/MS模式、(b)氧气MS/MS模式、(c)氨气MS/MS模式、(d)氨气Mass-Shift模式下池气体流速对基体空白溶液、基体加标溶液信号强度和背景等效浓度的影响

    Figure 2. 

    表 1  ICP-MS/MS仪器工作参数

    Table 1.  Working parameters of ICP-MS/MS instrument

    工作参数 标准MS/MS模式 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    产物离子 109Ag+ 109Ag+ 109Ag+ 109Ag+ 109Ag17(NH3)2+
    Q1Q3(m/z) 109→109 109→109 109→109 109→109 109→143
    质量切割参数(RPq) 0.25 0.25 0.45 0.45 0.45
    池气体 - He O2 NH3 NH3
    气体流速(mL/min) - 7.0 2.6 1.8 1.8
    下载: 导出CSV

    表 2  不同浓度的锆、铌溶液在不同测量模式下对109Ag干扰情况

    Table 2.  Interference effects of different concentrations of Zr and Nb solutions on 109Ag in different measurement modes

    溶液类型 锆或铌溶液浓度
    (mg/L)
    109Ag测定值(μg/L)
    氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    锆溶液 10.0 0.013 0.006 0.006 0.005
    50.0 0.061 0.008 0.007 0.007
    100 0.140 0.019 0.022 0.020
    500 1.047 0.035 0.030 0.030
    1000 2.432 0.050 0.047 0.046
    铌溶液 1.00 0.441 0.000 0.000 0.000
    5.00 2.630 0.005 0.007 0.003
    10.0 4.960 0.009 0.011 0.005
    50.0 26.542 0.036 0.037 0.013
    100 43.441 0.077 0.074 0.026
    500 411.726 0.472 0.356 0.128
    1000 978.826 1.006 0.780 0.261
    下载: 导出CSV

    表 3  不同测量模式下方法准确度和精密度

    Table 3.  Accuracy and precision tests of the method by different measurement modes

    标准物质编号 银标准值
    (mg/kg)
    Nb/Ag Zr/Ag 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    GBW07403 0.091±0.007 102 2703 0.096 2.4 5.5 0.094 2.2 3.3 0.095 3.1 4.4 0.093 2.6 2.2
    GBW07404 0.070±0.011 543 7143 0.115 3.0 64.3 0.075 4.0 7.2 0.077 3.8 10.0 0.076 4.6 8.6
    GBW07405 4.4±0.4 5 62 4.42 1.5 0.5 4.41 1.4 0.3 4.31 2.8 -2.1 4.40 2.4 0
    GBW07407 0.057±0.011 1123 5579 0.105 4.9 84.3 0.053 4.2 -7.1 0.051 5.1 -10.6 0.055 5.6 -3.6
    GBW07451 0.074±0.006 208 3446 0.073 5.0 -1.4 0.074 2.7 0 0.072 4.2 -2.8 0.070 2.8 -5.5
    GBW07302a 0.040±0.011 1000 3550 0.072 4.7 80.0 0.038 8.3 -5.0 0.034 5.9 -15.0 0.035 7.5 -12.5
    GBW07305a 0.63±0.06 27 437 0.652 3.3 3.5 0.629 1.8 -0.2 0.626 1.4 -0.7 0.628 0.7 -0.4
    GBW07309 0.089±0.010 202 4157 0.088 3.1 -1.2 0.086 1.8 -3.4 0.083 2.9 -6.8 0.087 3.6 -2.3
    GBW07311 3.2±0.4 8 48 3.20 2.0 0 3.21 1.4 0.4 3.18 1.6 -0.7 3.28 2.2 2.5
    GBW07375 0.040±0.004 155 2190 0.043 6.3 7.5 0.037 4.5 -7.6 0.038 5.6 -5.0 0.037 8.2 -7.5
    注:Nb/Ag和Zr/Ag分别为标准样品中铌和锆的含量与银含量的比值。
    下载: 导出CSV
  • [1]

    赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009

    Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009

    [2]

    夏辉, 张永花, 李景文, 等. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进[J]. 岩矿测试, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009 http://www.ykcs.ac.cn/cn/article/id/73150531-4c94-4244-bad3-0313f75e4f33

    Xia H, Zhang Y H, Li J W, et al. An improved method for determination of trace silver in geochemical exploration samples by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009 http://www.ykcs.ac.cn/cn/article/id/73150531-4c94-4244-bad3-0313f75e4f33

    [3]

    谭龙奇. 直接滴加液体缓冲剂CCD-Ⅰ型交流电弧直读发射光谱法测定土壤中银锡[J]. 中国无机分析化学, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008

    Tan L Q. Determination of Ag and Sn in soil by direct addition of liquid buffer CCD-Ⅰ emission spectrometer[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008

    [4]

    黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201909230137

    Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201909230137

    [5]

    肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm

    Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm

    [6]

    黄俐, 陈秀梅, 张晔霞. 微波消解-电感耦合等离子体质谱法测定土壤中的银[J]. 环境科学导刊, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm

    Huang L, Chen X M, Zhang Y X. Determination of silver in soil by microwave digestion method and inductively coupled plasma-mass spectrometry[J]. Environmental Science Survey, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm

    [7]

    于亚辉, 闫红岭, 陈浩凤, 等. 电感耦合等离子体质谱法测定地球化学样品中的银[J]. 理化检验(化学分册), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm

    Yu Y H, Yan H L, Chen H F, et al. Determination of silver in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm

    [8]

    刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm

    Liu J B, Zhang G Y. Determination of Be, Ba, Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm

    [9]

    张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    [10]

    杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm

    [11]

    Wu Y, Huang D M, Feng T, et al. Determination of silver in geological samples using aerosol dilution ICP-MS after water-bath extraction with inverse aqua regia[J]. Atomic Spectroscopy, 2021, 42(6): 374-382.

    [12]

    刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202002190018

    Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202002190018

    [13]

    刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650-658. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202105060058

    Liu T T, Qian Y D, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202105060058

    [14]

    刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中痕量银[J]. 冶金分析, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm

    Liu T T, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm

    [15]

    刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm

    Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm

    [16]

    高玉花, 毕建玲, 殷学博. P507负载泡塑分离-ICP-MS测定地质样品中的痕量银[J]. 山东国土资源, 2015, 31(12): 70-73.

    Gao Y H, Bi J L, Yin X B. Determination of trace Ag in geological samples by using P507 to separate ICP-MS loaded polyfoam[J]. Shandong Land and Resources, 2015, 31(12): 70-73.

    [17]

    徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子质谱测定21种国际地质标样中的银[J]. 分析化学, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm

    Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm

    [18]

    朱志刚, 李美丽, 孙元芳, 等. ICP-MS测定银的干扰现象分析与方法建立[J]. 分析仪器, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm

    Zhu Z G, Li M L, Sun Y F, et al. Analysis of interference phenomenon for determination of silver by ICP-MS[J]. Analytical Instrumentation, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm

    [19]

    薛志伟, 乔宁强, 朱晓贤, 等. ICP-MS测定土壤和水系沉积物中的微量银[J]. 中国测试, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm

    Xue Z W, Qiao N Q, Zhu X X, et al. Determination of trace silver in soil and water sediments by ICP-MS[J]. China Measurement & Test, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm

    [20]

    王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm

    Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm

    [21]

    Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions[J]. Science of the Total Environment, 2011, 409(15): 2981-2986.

    [22]

    Chang C C, Liu H T, Jiang S J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J]. Analytica Chimica Acta, 2003, 493(2): 213-218.

    [23]

    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131

    [24]

    黄智敏, 吴伟明, 杨雪, 等. 电感耦合等离子体串联质谱法直接测定高纯铽中稀土杂质[J]. 分析试验室, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm

    Huang Z M, Wu W M, Yang X, et al. Direct determination of rare earth impurities in highly pure terbium by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm

    [25]

    李爱阳, 伍素云, 刘宁, 等. ICP-MS/MS法测定壳聚糖中的重金属元素[J]. 分析试验室, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm

    Li A Y, Wu S Y, Liu N, et al. Determination of heavy metal elements in chitosan by inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm

    [26]

    赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202112230206

    Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202112230206

    [27]

    奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of < Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    [28]

    迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140-142.

    Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 140-142.

    [29]

    王振伟, 王维宇, 郭朝, 等. 电感耦合等离子体串联质谱氨气模式测定土壤中的银[J]. 环境化学, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm

    Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver in soil by ICP tandem mass spectrometry ammonia mode[J]. Environmental Chemistry, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm

    [30]

    Zhu Y B, Ariga T, Nakano K, et al. Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell[J]. Atomic Spectroscopy, 2021, 42(6): 304-305.

    [31]

    Eduardo B F, Ana R I, Martin R, et al. To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1135-1149.

    [32]

    Zhang J Y, Dong Y H, Xu Z F. Determination of silver in geological samples by dynamic reaction cell inductively coupled plasma mass spectrometry after extraction from boiling aqua regia[J]. Atomic Spectroscopy, 2017, 38(2): 37-41.

    [33]

    Zhang J Y, Dong Y H, Xu Z F. A simple method for the simultaneous determination of trace cadmium and silver in soil samples by dynamic reaction cell inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2016, 37(4): 131-135.

    [34]

    Naoki S, Yasuyuki S. Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2481-2487.

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1711
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2021-12-23
修回日期:  2022-01-27
录用日期:  2022-03-13
刊出日期:  2022-11-28

目录