中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

原位化学氧化修复工程中氧化剂需求量的测算研究现状

陈凯, 刘菲, 杨梓涵, 向鑫. 原位化学氧化修复工程中氧化剂需求量的测算研究现状[J]. 岩矿测试, 2023, 42(2): 271-281. doi: 10.15898/j.cnki.11-2131/td.202202170023
引用本文: 陈凯, 刘菲, 杨梓涵, 向鑫. 原位化学氧化修复工程中氧化剂需求量的测算研究现状[J]. 岩矿测试, 2023, 42(2): 271-281. doi: 10.15898/j.cnki.11-2131/td.202202170023
CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. doi: 10.15898/j.cnki.11-2131/td.202202170023
Citation: CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. doi: 10.15898/j.cnki.11-2131/td.202202170023

原位化学氧化修复工程中氧化剂需求量的测算研究现状

  • 基金项目:
    国家自然科学基金项目(42072275)
详细信息
    作者简介: 陈凯,硕士研究生,水文地质学专业。E-mail:2530593117@qq.com
    通讯作者: 刘菲,博士,教授,主要从事有机污染监测与地下水污染治理研究工作。E-mail:feiliu@cugb.edu.cn
  • 中图分类号: G264.3;TQ031.7

Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application

More Information
  • 原位化学氧化(ISCO)修复技术由于修复周期短、效率高等特点已被广泛应用于土壤和地下水的有机污染修复。ISCO修复中所需的氧化剂的剂量通常用氧化剂需求量来衡量,在实际应用过程中,使用的氧化剂剂量过多或过少均会产生一定的负面影响。因此,氧化剂需求量的准确测算对于获得良好的工程修复效益具有重要意义。本文在对氧化剂需求量的组成及定义进行梳理、统一的基础上,重点综述了相关测算方法的原理和应用现状。ISCO修复中总氧化剂需求量(TOD)的组成包括污染物氧化剂需求量(POD)、天然氧化剂需求量(NOD)和氧化剂分解量(DEO)。NOD和DEO的存在为有机污染物有效的修复降解和TOD的准确测算带来了挑战。氧化剂需求量的测算方法可以分为实验法和化学计量模型法两大类,实验法又可以分为批实验法、柱实验法、注抽实验法和反应动力学模型法,批实验法的是目前应用目前较为最为广泛。在实验法中,同一样品的不同时间点获得的氧化剂需求量差距可以达到37%,因此应把污染物浓度在氧化作用下降低到目标限值所需要的时间作为氧化剂需求量的测定时间,并且为了更为精准地提供氧化剂需求量,有必要使用带有测试条件的表达方式来进行表示。目前的氧化剂需求量测算方法多针对于高锰酸钾氧化剂需求量。芬顿试剂和臭氧等分解性较强的氧化剂的DEO可能达到TOD的50%以上,现有方法对DEO的准确测算仍面临困难,应予以特别关注。除了需要开发出能够准确获得DEO的测算方法,场地施工条件对TOD的影响也需要进一步探究,氧化剂需求量的测算仍需一个更为科学的工作流程或指南。

  • 加载中
  • 表 1  氧化剂需求量相关术语及定义

    Table 1.  Terms and concepts related to oxidant demand

    氧化剂需求量相关术语 定义
    污染物氧化剂需求量
    (Pollutant Oxidant Demand,POD)
    污染物氧化降解所消耗的氧化剂量
    天然氧化剂需求量
    (Natural Oxidant Demand,NOD)
    土壤或含水层介质中的天然有机质和还原性矿物质所消耗的氧化剂量
    氧化剂分解量
    (Decomposed Oxidant, DEO)
    氧化剂因本身的性质以及环境条件的影响而自然分解,未能参与到氧化反应过程中的那部分剂量
    下载: 导出CSV
  • [1]

    郑伟, 梅浩, 陈敬仁. 原位化学氧化技术在地下水修复工程中的应用[J]. 资源节约与环保, 2018(10): 23-25. doi: 10.3969/j.issn.1673-2251.2018.10.026

    Zheng W, Mei H, Chen J R. Application of in situ chemical oxidation technology in groundwater remediation projects[J]. Resources Economization & Environmental Protection, 2018(10): 23-25. doi: 10.3969/j.issn.1673-2251.2018.10.026

    [2]

    沈宗泽, 王祺, 阎思诺, 等. 连续管式原位注入化学氧化技术对某有机污染场地地下水的修复效果[J]. 环境工程学报, 2022, 16(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202201010.htm

    Shen Z Z, Wang Q, Yan S N, et al. Pilot scale study on groundwater remediation in an organic contaminated site by coiled tubing in situ injection chemical oxidation technique[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202201010.htm

    [3]

    章生卫, 程小谷, 于李罡, 等. 石油烃污染地下水原位化学氧化修复研究[J]. 环境科学与技术, 2021, 44(S1): 56-60. doi: 10.19672/j.cnki.1003-6504.2021.S1.009

    Zhang S W, Cheng X G, Yu L G, et al. Research on in situ chemical oxidation remediation of groundwater contaminated by petroleum hydrocarbons[J]. Environmental Science & Technology, 2021, 44(S1): 56-60. doi: 10.19672/j.cnki.1003-6504.2021.S1.009

    [4]

    Boulangé M, Lorgeoux C, Biache C, et al. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior[J]. Chemosphere, 2019, 224: 437-444. doi: 10.1016/j.chemosphere.2019.02.108

    [5]

    曹兴涛, 谷广锋, 王新新, 等. 储油罐污染场地原位化学氧化修复进展[J]. 现代化工, 2017, 37(6): 20-23. doi: 10.16606/j.cnki.issn0253-4320.2017.06.005

    Cao X T, Gu G F, Wang X X, et al. Progress of in situ chemical oxidation remediation of contaminated site by leaking oil storage tank[J]. Modern Chemical Industry, 2017, 37(6): 20-23. doi: 10.16606/j.cnki.issn0253-4320.2017.06.005

    [6]

    Huling S G, Ross R R, Prestbo K M. In situ chemical oxidation: Permanganate oxidant volume design considerations[J]. Groundwater Monitoring & Remediation, 2017, 37(2): 78-86.

    [7]

    Haselow J S, Siegrist R L, Crimi M, et al. Estimating the total oxidant demand for in situ chemical oxidation design[J]. Remediation Journal, 2003, 13(4): 5-16. doi: 10.1002/rem.10080

    [8]

    Mumford K G, Thomson N R, Allen-King R M. Bench-scale investigation of permanganate natural oxidant demand kinetics[J]. Environmental Science & Technology, 2005, 39(8): 2835-2840.

    [9]

    Kim U, Parker J C, Borden R C. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 73-89. doi: 10.1007/s00477-018-1633-y

    [10]

    Kakosová E, Hrabák P, Cerník M, et al. Effect of various chemical oxidation agents on soil microbial communities[J]. Chemical Engineering Journal, 2017, 314: 257-265. doi: 10.1016/j.cej.2016.12.065

    [11]

    杨乐巍, 张岳, 李书鹏, 等. 原位化学氧化高压注射修复优化设计与应用案例分析[J]. 环境工程, 2019, 37(8): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201908034.htm

    Yang L W, Zhang Y, Li S P, et al. A case study on design and application of in situ chemical oxidation high pressure injection remediation[J]. Environmental Engineering, 2019, 37(8): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201908034.htm

    [12]

    Wang N, Zheng T, Zhang G, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016

    [13]

    Li Y, Yang K, Liao X, et al. Quantification of oxidant demand and consumption for in situ chemical oxidation design: In the case of potassium permanganate[J]. Water, Air & Soil Pollution, 2018, 229(11): 375.

    [14]

    Ranc B, Faure P, Croze V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297. doi: 10.1016/j.jhazmat.2016.03.068

    [15]

    ASTM. D7262-10. Standard test method for estimating the permanganate natural oxidant demand of soil and aquifer solids[S]. 2010.

    [16]

    Mumford K G, Lamarche C S, Thomson N R. Natural oxidant demand of aquifer materials using the push-pull technique[J]. Journal of Environmental Engineering, 2004, 130(10): 1139-1146. doi: 10.1061/(ASCE)0733-9372(2004)130:10(1139)

    [17]

    Brown R A. In situ chemical oxidation: Performance, practice, and pitfalls. AFCEE Technology Transfer Workshop[R]. San Antonio, 2003.

    [18]

    Liang C, Chien Y C, Lin Y L. Impacts of ISCO persul-fate, peroxide and permanganate oxidants on soils: Soil oxidant demand and soil properties[J]. Soil and Sediment Contamination: An International Journal, 2012, 21(6): 701-719. doi: 10.1080/15320383.2012.691129

    [19]

    Besha A T, Bekele D N, Naidu R, et al. Recent advances in surfactant-enhanced in situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers[J]. Environmental Technology & Innovation, 2018, 9: 303-322.

    [20]

    Liu J, Liu Z, Zhang F, et al. Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: Effect of soil composition on oxidant demand in different soil-persulfate systems[J]. Water Science and Technology, 2017, 75(8): 1794-1803. doi: 10.2166/wst.2017.052

    [21]

    Huling S G, Pivetz B E. In situ chemical oxidation[R]. EPA, 2006.

    [22]

    Hønning J, Broholm M M, Bjerg P L. Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials[J]. Journal of Contaminant Hydrology, 2007, 90(3-4): 221-239. doi: 10.1016/j.jconhyd.2006.10.002

    [23]

    Liao X, Zhao D, Yan X. Determination of potassium perman-ganate demand variation with depth for oxidation-remediation of soils from a PAHs-contaminated coking plant[J]. Journal of Hazardous Materials, 2011, 193: 164-170. doi: 10.1016/j.jhazmat.2011.07.045

    [24]

    Siegrist R L, Crimi M, Simpkin T J. In situ chemical oxidation for groundwater remediation[M]. Springer Science & Business Media, 2011.

    [25]

    刘中良, 洪小峰, 舒代容. 有机污染场地氧化剂需求量及不同活化条件下氧化剂降解动力学研究[J]. 环境与发展, 2020, 32(11): 84-86. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202011038.htm

    Liu Z L, Hong X F, Shu D R. Study on oxidant demand and degradation kinetics of oxidant under different activation conditions in organic polluted sites[J]. Environment & Development, 2020, 32(11): 84-86. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202011038.htm

    [26]

    Costanza J, Otaño G, Callaghan J, et al. PCE oxidation by sodium persulfate in the presence of solids[J]. Environmental Science & Technology, 2010, 44(24): 9445-9450.

    [27]

    Lee E S, Woo N C, Schwartz F W, et al. Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: A pilot-scale flow-tank study[J]. Chemosphere, 2008, 71(5): 902-910. doi: 10.1016/j.chemosphere.2007.11.037

    [28]

    Urynowicz M A, Balu B, Udayasankar U. Kinetics of natural oxidant demand by permanganate in aquifer solids[J]. Journal of Contaminant Hydrology, 2008, 96(1-4): 187-194.

    [29]

    Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxida-tion of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91.

    [30]

    Cha K Y, Borden R C. Impact of injection system design on ISCO performance with permanganate-mathematical modeling results[J]. Journal of Contaminant Hydrology, 2012, 128(1): 33-46.

    [31]

    Dangi M B, Urynowicz M A, Udayasankar U. Assessment of the experimental conditions affecting natural oxidant demand of soil by permanganate[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5160-5166.

    [32]

    Dangi M B, Urynowicz M A, Schultz C L, et al. A comparison of the soil natural oxidant demand exerted by permanganate, hydrogen peroxide, sodium persulfate, and sodium percarbonate[J]. Environmental Challenges, 2022, 7: 100456.

    [33]

    Yan N, Liu F, Chen Y, et al. Influence of groundwater constituents on 1, 4-dioxane degradation by a binary oxidant system[J]. Water, Air & Soil Pollution, 2016, 227(12): 1-7.

    [34]

    Urynowicz M A. In situ chemical oxidation with perman-ganate: Assessing the competitive interactions between target and nontarget compounds[J]. Soil & Sediment Contamination, 2007, 17(1): 53-62.

    [35]

    Al-Shamsi M A, Thomson N R. Competition by aquifer materials in a bimetallic nanoparticle/persulfate system for the treatment of trichloroethylene[J]. Environmental Science: Processes & Impacts, 2013, 15(10): 1964-1968.

    [36]

    Baciocchi R. Principles, developments and design criteria of in situ chemical oxidation[J]. Water, Air & Soil Pollution, 2013, 224(12): 1-11.

    [37]

    王文坦, 邵雁, 李社锋, 等. 一种土壤化学需氧量的测定方法: CN201610539931.8[P]. 2016-11-23.

    Wang W T, Shao Y, Li S F, et al. A method for determination of chemical oxygen demand of soil: CN201610539931.8[P]. 2016-11-23.

    [38]

    杨勇, 张蒋维, 陈恺, 等. 化学氧化法治理焦化厂PAHs污染土壤[J]. 环境工程学报, 2016, 10(1): 427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201601072.htm

    Yang Y, Zhang J W, Chen K, et al. Chemical oxidation of coking plant soils contaminated with polycyclic aromatic hydrocarbons[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201601072.htm

    [39]

    Huang Q, Dong H, Towne R M, et al. Permanganate diffu-sion and reaction in sedimentary rocks[J]. Journal of Contaminant Hydrology, 2014, 159: 36-46.

    [40]

    Xu X, Thomson N R. A long-term bench-scale investi-gation of permanganate consumption by aquifer materials[J]. Journal of Contaminant Hydrology, 2009, 110(3-4): 73-86.

    [41]

    Xu X, Thomson N R. Estimation of the maximum consum-ption of permanganate by aquifer solids using a modified chemical oxygen demand test[J]. Journal of Environmental Engineering, 2008, 134(5): 353-361.

    [42]

    Molnár M. Hydrogen peroxide oxidation for in situ remed-iation of trichloroethylene-from the laboratory to the field[J]. Periodica Polytechnica Chemical Engineering, 2013, 57(1-2): 41-51.

    [43]

    Thomson N, Sra K, Xu X. Improved understanding of in situ chemical oxidation. Technical objective 2: Soil reactivity[R]. 2009.

    [44]

    Xu X. Interaction of chemical oxidants with aquifer materials[D]. Waterloo: University of Waterloo, 2006.

    [45]

    李旭, 苏世林, 文章, 等. 单井注抽试验测算地下水流速的数值分析[J]. 地球科学, 2022, 47(2): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202019.htm

    Li X, Su S L, Wen Z, et al. Numerical analysis of estimating groundwater velocity through single-well push-pull test[J]. Earth Science, 2022, 47(2): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202019.htm

    [46]

    Mathai A. Push-pull tests to support in situ chemical oxidation system design[D]. Waterloo: University of Waterloo, 2012.

    [47]

    尚晓伟, 姚佳斌, 田文钢, 等. 原位化学氧化技术在有机污染场地中试工程设计研究[J]. 环境与发展, 2020, 32(12): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202012035.htm

    Shang X W, Yao J B, Tian W G, et al. Research on pilot project design of in situ chemical oxidation technology in organic contaminated site[J]. Environment and Development, 2020, 32(12): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202012035.htm

    [48]

    Ko S, Ji S. In situ push-pull tests for the determination of TCE degradation and permanganate consumption rates[J]. Environmental Geology, 2007, 53(2): 359-364.

    [49]

    Hendrych J, Kubal M, Beneš P, et al. The influence of solids characteristics on the specific oxidant consumption by in-situ chemical oxidation using potassium[J]. Acta Montanistica Slovaca, 2008, 13(3): 285-289.

    [50]

    Bendouz M, Dionne J, Tran L H, et al. Polycyclic aromatic hydrocarbon oxidation from concentrates issued from an attrition process of polluted soil using the Fenton reagent and permanganate[J]. Water, Air & Soil Pollution, 2017, 228(3): 115.

    [51]

    Teel A L, Elloy F C, Watts R J. Persulfate activation during exertion of total oxidant demand[J]. Chemosphere, 2016, 158: 184-192.

    [52]

    Xu X, Thomson N R. Hydrogen peroxide persistence in the presence of aquifer materials[J]. Soil & Sediment Contamination, 2010, 19(5): 602-616.

  • 加载中

(1)

计量
  • 文章访问数:  1647
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2022-02-17
修回日期:  2022-05-10
录用日期:  2022-12-02
刊出日期:  2023-03-28

目录