中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑

刘芳美, 甘聪, 廖彬玲, 罗小兵, 赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑[J]. 岩矿测试, 2023, 42(2): 298-306. doi: 10.15898/j.cnki.11-2131/td.202205160102
引用本文: 刘芳美, 甘聪, 廖彬玲, 罗小兵, 赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑[J]. 岩矿测试, 2023, 42(2): 298-306. doi: 10.15898/j.cnki.11-2131/td.202205160102
LIU Fangmei, GAN Cong, LIAO Binling, LUO Xiaobing, LAI Qiuxiang. Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298-306. doi: 10.15898/j.cnki.11-2131/td.202205160102
Citation: LIU Fangmei, GAN Cong, LIAO Binling, LUO Xiaobing, LAI Qiuxiang. Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298-306. doi: 10.15898/j.cnki.11-2131/td.202205160102

锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑

  • 基金项目:
    国家重点研发计划项目“国家质量基础的共性技术研究与应用”(2019YFF0217100)
详细信息
    作者简介: 刘芳美,硕士,工程师,从事矿石与矿物、贵金属与合金、水质分析方法应用开发工作。E-mail:liufangmei2014@163.com
  • 中图分类号: P641.12;P332.7

Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay

  • 铜阳极泥富集了矿石、精矿或熔剂中绝大部分贵金属(如铱和铑),具有很高的综合回收价值。目前尚无铜阳极泥中铱和铑检测标准,而对其中铱和铑检测方法的开发是铱铑回收提取工作的重要前提。本文建立了锍镍试金富集结合电感耦合等离子体质谱法(ICP-MS)测定铜阳极泥中铱铑的检测技术。实验中通过锍镍试金捕集试样中的贵金属铱和铑,用50%盐酸溶解锍镍扣,使得含铱和铑的沉淀物与银及其他杂质元素有效分离,趁热过滤,铱铑沉淀物和滤膜转入封闭消解罐中以50%王水为介质溶解。试液采用ICP-MS直接测定铱和铑含量。实验优化了样品预处理条件,镍硫比为4∶1,时,熔渣为酸性,熔渣流动性和渣扣分离效果好且能有效捕集试样中铱和铑;锍镍扣溶解酸度为50%盐酸时,锍镍扣溶解反应合适且溶解完全,趁热过滤,其中银、镍、铜等杂质元素大部分被盐酸除去,达到了分离含铱和铑沉淀物与银及其他杂质元素的效果; 密封消解温度和时间分别为160℃、2~3h时,铱和铑消解完全;选择合适的测定同位素可以消除可能存在的质谱干扰,以193Ir和103Rh为测定同位素、203Tl和185Re分别为铱和铑的内标时消除了信号漂移基体效应的影响。在优化的实验条件下测定铑和铱混合标准溶液系列,结果表明,铑和铱在10~100μg/L质量浓度范围内和铑及铱质谱强度与内标质谱强度之比呈线性关系,铱和铑的线性回归方程分别为y=36674.6x+8264.7和y=45686.7x+288.6,线性相关系数均大于0.999,方法检出限分别为0.007μg/L和0.011μg/L,定量下限分别为0.024μg/L和0.038μg/L。按照实验方法测定8个实际铜阳极泥试样中铱和铑,测定结果的相对标准偏差(RSD,n=7)为1.40%~4.57%,加标回收率为95.00%~103.65%。该方法能够满足铜阳极泥样品的检测要求。

  • 加载中
  • 表 1  3#试样采用不同锍镍试金配方(即不同镍硫比)的实验现象并于镍:硫为4∶1时获得良好锍镍扣

    Table 1.  Experimental phenomena in 3# sample with different ratios of nickel to sulfur. The ratio of nickel to sulfur was 4∶1, it could effectively capture the iridium and rhodium in the sample to obtain good NiS beads with good fluidity of molten slag and the separation effect of slag buckle

    方案编号 配料各成分的质量(g) 实验现象 锍镍扣质量(g)
    碳酸钠 碱式碳酸镍 二氧化硅 硼砂 淀粉
    方案1 20 1 8 10 1 1 扣偏小, 渣与扣未完全分离 0.72
    方案2 20 2 8 10 1 1 扣溶解时存在大量硫漂浮物 1.42
    方案3 20 2 8 10 1 0.5 流动性好,与扣易分离 1.37
    方案4 10 2 3 20 0 0.5 粘渣,扣不光滑 0.48
    下载: 导出CSV

    表 2  样品3#采用不同温度不同时间消解的实验现象并于密封消解温度和时间分别为160℃和2~3h时消解完全

    Table 2.  Experimental phenomena in 3# sample with different temperatures and digestion time. The precipitation containing rhodium and iridium could completely digestion at 160℃ for 2-3h

    消解温度(℃) 不同消解时间下实验现象
    1h 2h 3h 4h 5h
    120 有不溶物 有不溶物 有不溶物 有不溶物 有不溶物
    140 有不溶物 有不溶物 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全
    160 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全
    180 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全
    下载: 导出CSV

    表 3  方法准确度和精密度能满足铜阳极泥中铱、铑元素的分析要求

    Table 3.  Accuracy and precision tests of the method. The proposed method could satisfy the detection requirements of copper anode slime samples with high efficiency and accuracy

    样品编号 元素 测定值(μg/g) RSD(%) 实验1 实验2
    加标量(μg/g) 测得总量(μg/g) 回收率(%) 加标量(μg/g) 测得总量(μg/g) 回收率(%)
    1# Ir 10.16 3.83 10.00 19.66 95.00 20.00 29.51 96.75
    Rh 84.24 3.22 80.00 161.42 96.48 160.00 241.24 98.12
    2# Ir 50.35 3.91 50.00 100.89 101.08 100.00 149.77 99.42
    Rh 128.71 4.50 100.00 227.35 98.64 200.00 330.11 100.70
    3# Ir 86.80 1.40 80.00 163.69 96.11 160.00 247.00 100.12
    Rh 192.81 1.99 100.00 293.84 101.03 200.00 397.15 102.17
    4# Ir 136.32 2.45 100.00 233.57 97.25 200.00 335.86 99.77
    Rh 214.14 3.06 100.00 310.64 96.50 200.00 416.82 101.34
    5# Ir 192.64 2.97 100.00 293.00 100.36 200.00 395.17 101.26
    Rh 285.81 3.12 150.00 433.94 98.75 300.00 583.88 99.36
    6# Ir 253.78 4.29 100.00 355.48 101.70 200.00 451, 73 98.98
    Rh 423.67 3.10 100.00 520.19 96.52 200.00 619.83 98.08
    7# Ir 281.99 2.02 100.00 383.41 101.42 200.00 479.52 98.76
    Rh 501.01 2.32 100.00 600.00 98.99 200.00 708.31 103.65
    8# Rh 21.41 4.57 20.00 41.04 98.15 40.00 60.07 96.65
    下载: 导出CSV
  • [1]

    王甜甜, 郭晓瑞, 毛香菊, 等. 锡试金富集-微波消解-石墨炉原子吸收光谱法测定地球化学样品中痕量铑和铱[J]. 冶金分析, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm

    Wang T T, Guo X R, Mao X J, et al. Determination of trace rhodium and iridium in geochemical samples by graphite furnace atomic absorption spectrometry with tin fire assay and microwave digestion[J]. Metallurgical Analysis, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm

    [2]

    张金矿, 于亚辉, 陈浩凤, 等. 密闭消解-ICP-MS法测定地质样品中的痕量铑和铱[J]. 贵金属, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm

    Zhang J K, Yu Y H, Chen H F, et al. Sealed digestion and ICP-MS determination of trace Rh and Ir in geological samples[J]. Precious Metals, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm

    [3]

    Amer A M. Processing of copper anodic-slimes for extraction of valuable metals[J]. Waste Management, 2003, 23(8): 763-770. doi: 10.1016/S0956-053X(03)00066-7

    [4]

    冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm

    Feng X J. Application of inductively coupled plasma mass spectrometry for analysis of ore and mineral in China[J]. Metallurgical Analysis, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm

    [5]

    毛香菊, 刘璐, 肖芳, 等. 锍镍试金-微波消解-高分辨率连续光源石墨炉原子吸收光谱法测定岩石矿物中超痕量铂钯钌铑铱[J]. 冶金分析, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm

    Mao X J, Liu L, Xiao F, et al. Determination of ultra-trace platinum, palladium, ruthenium, rhodium and iridium in rocks and minerals by high resolution continuum source graphite furnace atomic absorption spectrometry with nickel sulfide fire assay enrichment and microwave digestion[J]. Metallurgical Analysis, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm

    [6]

    Ni W S, Mao X J, Zhang H L. Determination of ultra-trace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699-1710. doi: 10.1080/00032719.2019.1566348

    [7]

    Zhang G, Tian M. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction[J]. Optics & Spectroscopy, 2015, 118(4): 513-518.

    [8]

    毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm

    Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm

    [9]

    熊方祥, 杨炳红, 符招弟, 等. 镍锍试金-铝共熔-电感耦合等离子体发射光谱(ICP-OES)法测定废催化剂中铑铱钌[J]. 中国无机分析化学, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm

    Xiong F X, Yang B H, Fu Z D, et al. Determination of rhodium, iridium and ruthenium in spent catalystss by inductively coupled plasma emission optical spectrometry with nickel sulphide fire-assay and aluminum eutectic[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm

    [10]

    程志炎, 李鼎, 寇勇强, 等. 锂盐-锍镍试金-等离子质谱法测定黑色页岩中铂族元素[J]. 化学分析计量, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm

    Cheng Z Y, Li D, Kou Y Q, et al. Determination of platinum group elements in black shale by inductively coupled plasma-mass spectrometry with lithium salt-nickel sulphide fire-assay[J]. Chemical Analysis and Meterage, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm

    [11]

    蔡树型, 黄超. 贵金属分析[M]. 北京: 冶金工业出版社, 1984: 38-40.

    Cai S X, Huang C. Analysis of precious metals[M]. Beijing: Metallurgical Industry Press, 1984: 38-40.

    [12]

    施意华, 靳晓珠, 熊传信, 等. 锍镍试金富集-等离子质谱法测定地质样品中的金铂钯铑铱钌[J]. 矿产与地质, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm

    Shi Y H, Ji X Z, Xiong C X, et al. Determination of Au, Pt, Pd, Rh, Ir and Ru in geological samples by sulfonium nickel assaying enrichment with ICP-MS method[J]. Mineral Resources and Geology, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm

    [13]

    刘向磊, 孙文军, 文田耀, 等. 地质样品中贵金属分析方法现状及展望[J]. 冶金分析, 2022, 42(12): 23-35.

    Liu X L, Sun W J, Wen T Y, et al. Status and prospect of analytical methods for precious metal elements in geological samples[J]. Metallurgical Analysis, 2022, 42(12): 23-35.

    [14]

    王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15-29. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201905160064

    Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15-29. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201905160064

    [15]

    郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm

    Guo J F, Lai X Z, Wang L, et al. The reaction principle of fire assay and discussion on the influencing factors of slag[J]. Metallurgical Analysis, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm

    [16]

    张彦斌, 程忠洲, 李华. 锍试金富集-电感耦合等离子体质谱法测定地质样品中铂钯铑铱[J]. 冶金分析, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm

    Zhang Y B, Cheng Z Z, Li H. Determination of platinum, palladium, rhodium and iridium in geological samples by inductively coupled plasma-mass spectrometry after the preconcentration with nickel sulphide fire assay[J]. Metallurgical Analysis, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm

    [17]

    赵素利, 张欣, 李曼, 等. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素[J]. 岩矿测试, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405

    Zhao S L, Zhang X, Li M, et al. Determination of platinum group elements in pyrite samples by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405

    [18]

    Li X L, Ebihara M. Determination of all platinum-group elements in mantle-derived xenoliths by neuton activation analysis with NiS fire-assay preconcentration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255(1): 131-135.

    [19]

    沈宇, 张尼, 高小红, 等. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷[J]. 岩矿测试, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413

    Shen Y, Zhang N, Gao X H, et al. Determination of vanadium-chromium-nickel-germanium-germanium arsenic in geochemical samples by microwave digestion inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413

    [20]

    石贵勇, 孙晓明, 张燕, 等. 锍镍试金富集-等离子体质谱法测定煌斑岩中铂族元素[J]. 岩矿测试, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486

    Shi G Y, Sun X M, Zhang Y, et al. Determination of platinum group elements in Lamprophyre sample by nickel sulfide fire assay-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486

    [21]

    宋小年, 冯天培. 电感耦合等离子体发射光谱法测定高纯金属锡中痕量杂质元素[J]. 岩矿测试, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390

    Song X N, Feng T P. Determination of trace impurity elements in high purity tin metal by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390

    [22]

    胡圣虹, 陈爱芳, 林守麟, 等. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J]. 地球科学, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm

    Hu S H, Chen A F, Lin S L, et al. ICP-MS analysis of 40 trace, trace and ultra trace elements in geological samples[J]. Earth Science, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm

    [23]

    Schonberg G. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS[J]. Geostandards and Geoanalytical Research, 1993, 17(1): 81-97.

    [24]

    王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    [25]

    姚慧, 王阳, 杨惠玲. 超级微波消解电感耦合等离子体质谱法测定车用陶瓷催化剂中铂、钯、铑[J]. 化学分析计量, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm

    Yao H, Wang Y, Yang H L. Determination of Pt, Pd, Rh in automotive ceramic catalyst by super microwave digestion inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm

    [26]

    刘芳美, 赖秋祥, 巫贞祥, 等. 密闭消解-电感耦合等离子体原子发射光谱法测定铂钯精矿中铜金铂钯硒碲铋铱铑[J]. 冶金分析, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm

    Liu F M, Lai Q X, Wu Z X, et al. Determination of copper, gold, platinum, palladium, selenium, tellurium, bismuth, iridium and rhodium in platinum and palladium concentrates by inductive plasma atomic emission spectrometry with sealed digestion[J]. Metallurgical Analysis, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm

    [27]

    刘娟, 庞文林, 朱红波, 等. ICP-OES法测定石油重整废催化剂中的铂、铱量[J]. 湖南有色金属, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm

    Liu J, Pang W L, Zhu H B, et al. Determination of Pt and Ir in petroleum reforming waste catalyst by ICP-OES[J]. Hunan Nonferrous Metals, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm

  • 加载中

(3)

计量
  • 文章访问数:  1596
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-05-16
修回日期:  2022-08-20
录用日期:  2022-10-01
刊出日期:  2023-03-28

目录