A Review of Research Progress on Provenance Indication of Rare Earth Elements by Inductively Coupled Plasma-Mass Spectrometry Hyphenated Techniques
-
摘要:
稀土元素(REEs)不仅是重要的战略资源,而且因其特有的地球化学属性,在追踪岩石、矿物、沉积物等物质的来源方面具有重要研究意义。近年来,随着REEs在现代社会的广泛应用,人为源REEs作为潜在新兴污染物,在自然环境中的出现频率及浓度水平明显提高。然而,相比于地质源REEs,目前关于人为源REEs研究相对较少,且受检测技术的制约直接测定人为源REEs较为困难。随着仪器分析技术的发展,高选择性的离子色谱(IC)分离技术与高灵敏的电感耦合等离子体质谱(ICP-MS)技术的联用在人为源REEs分析中发挥了重要作用,该技术的元素形态分析能力使其成为人为源REEs分析的重要研究工具之一。ICP-MS及其联用技术等高精度分析技术发展,使REEs物源指示方面的研究取得革命性突破。本文系统阐述了REEs分异特征、同位素分馏、赋存形态等地球化学特征在识别物质来源、解析关键过程、示踪环境行为等方面的研究进展,主要包括:①REEs配分模式、同位素分异特征在传统物源指示方面有着广泛应用,研究主要基于REEs丰度或同位素分馏信息,结合相关数理统计模型,完成岩石、矿物等物质的溯源研究;②REEs形态特征能够为指示人类活动提供重要依据,譬如,由于使用的核磁共振钆对比剂(GBCAs)种类存在地域差异,人为源REEs赋存形态在不同地区也存在明显的不同,德国等地区自然水体中大环型GBCAs检出率较高,线型检出率较低。在此基础上,系统回顾了ICP-MS及其联用技术在REEs物源示踪研究中的相关应用进程,归纳总结了REEs在追踪物质来源、指示人类活动方面的主要研究情况,对REEs物源示踪研究发展前景作了展望。在这些分析技术中,激光剥蚀多接收等离子体质谱技术(LA-MC-ICP-MS)可以原位获得样品内部REEs同位素组成的空间分布信息;基于亲水离子色谱-电感耦合等离子体质谱联用技术(HILIC-ICP-MS)的形态分析方法可为人为源REEs研究提供“多维”数据。针对目前技术方法体系存在的不足,本文提出了开发快速便携分析技术、整合多维信息进行示踪研究、综合考虑人类活动影响的研究展望。
Abstract:Rare earth elements (REEs) are not only important strategic resources, but also have important research significance in tracing the sources of rocks, minerals, sediments, and other materials due to their unique geochemical properties. In recent years, with the increasing use of REEs in modern society, anthropogenic REEs have attracted widespread attention from scholars at home and abroad through different pathways into environmental media such as the atmosphere, water and soil. Gadolinium (Gd), one of the most widely used REEs, is commonly used as Gd-based constrast agents (GBCAs). Since the application of GBCAs in the 1980s, their use has increased year by year. However, GBCAs are highly hydrophilic and stable, and they are difficult to remove in conventional wastewater treatment; the vast majority of them can directly enter urban and surrounding waters. Since Bau and Dulski first reported positive Gd anomalies in the Rhine River in Germany in 1996, anthropogenic Gd, an emerging contaminant, has now been detected in surface waters worldwide. However, there are relatively few studies on anthropogenic REEs, and the direct determination of them is difficult due to the constraints of detection techniques, and traditional methods for estimating anthropogenic REEs are inevitably subject to varying degrees of error.
Since its introduction in the 1980s, inductively coupled plasma-mass spectrometry (ICP-MS) has shown great potential for trace multi-element analysis due to its high sensitivity, low detection limits and wide linearity range. The technique combines a plasma ion source with high ionization efficiency and a mass spectrometer with the advantages of high sensitivity, rapid multi-element detection and less mass interference compared to spectroscopy in a special interface, making it a highly efficient technique for simultaneous multi-element analysis. The development of high-precision ICP-MS and its coupling techniques, has led to a revolutionary breakthrough in the study of REEs provenance indication. The combination of highly selective separation techniques such as ion chromatography and highly sensitive ICP-MS has played an important role in the analysis of anthropogenic REEs, and the elemental speciation analysis capabilities of it make this one of the key research tools for the analysis of anthropogenic REEs.
The progress of geochemical features of REEs such as isotopes in identifying material sources, resolving key processes and tracing environmental behavior, is summarized in this study, mainly including: (1)REEs fractionation patterns and isotopic features have been widely used in traditional provenance indication, and research is mainly based on REEs content or isotope information, combined with relevant mathematical and statistical models; (2) The speciation of REEs can provide an important basis for indicating anthropogenic activities, for example, due to the regional differences in the types of GBCAs used, there are obvious geographical differences in the speciation of anthropogenic REEs, with a high detection rate of macrocyclic GBCAs and a low detection rate of linear GBCAs in natural waters in regions such as Germany. On this basis, the application of ICP-MS and its coupling techniques in the source tracing of REEs is systematically reviewed, the main studies on REEs for tracing the sources of substances and indicating human activities are summarized, and the prospects for the development of source tracing of REEs are outlined. Among these analytical techniques, laser ablation multicollector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) can be used to obtain in-situ information on the spatial distribution of the isotopic composition of REEs within samples. Hydrophilic interaction liquid chromatography coupled to inductively coupled plasma-mass spectrometry (HILIC-ICP-MS) has become an important tool for the analysis of the speciation of anthropogenic REEs in waters.
To address the shortcomings of the current technical approach, a research outlook for the development of rapid and portable analytical techniques, the integration of multidimensional information for tracer studies, and the integrated consideration of the effects of human activitiesis proposed. It is worth noting that the frequency and concentration levels of anthropogenic REEs in the natural environment have increased significantly, which may affect the distribution characteristics of geogenic REEs and thus reduce the accuracy of traditional source tracing studies. Therefore, future studies need to consider whether human activities in the vicinity have significantly influenced the study area before conducting conventional provenance indication analyses.
-
物源示踪是追溯物质来源、揭示其搬运路径的重要手段,对理解物质源汇过程具有重要研究意义[1]。目前主要的研究方法之一是分析被检样品的稀土元素(简称REEs)的地球化学特征,其依据在于物质来源不同,成岩矿物、沉积物等呈现不同的REEs分布模式[2]。REEs包括元素周期表第六周期副族的镧系元素(La~Lu)以及钪(Sc)和钇(Y)元素,它们的晶体化学性质很相似,在自然界密切共生,但同时各REEs之间也存在一定差异(图 1),导致REEs在外部条件发生改变时会发生分馏,因此,REEs的地球化学特征是其作为物源指示剂的重要理论依据[3]。传统的REEs物源示踪研究主要基于沉积物、土壤、矿物等物质中REEs组成、同位素分异特征,判别物质主要来源[4]。譬如,Liu等[5]通过对华北平原第四系沉积物中REEs含量、特征参数和配分模式进行系统研究,得到平原沉积物的物质来源主要为区域陆源碎屑的结果。密蓓蓓等[6]基于中国东海周边中小型河流沉积物中的锶钕铅同位素分析结果,判别了东部陆架区沉积物的主要来源,为认识沉积物源汇过程及海陆相互作用提供了重要依据。
随着REEs在现代社会中使用量不断增加,人为源REEs通过不同途径进入大气、水和土壤等环境介质中,已引起国内外学者的广泛关注[7]。稀土微肥广泛应用于中国农业生产,稀土农用的面积达数千万亩以上[8]。现代工业中,钆(Gd)作为应用最广泛的REEs之一,其常用作核磁共振的钆对比剂(GBCAs)。自从20世纪80年代GBCAs应用以来,其使用量逐年增加,GBCAs具有很强的亲水性和稳定性,其在传统污水处理中很难被去除,绝大部分可直接进入城市及周边水体[9]。自1996年Bau和Dulski[10]首次报道了德国莱茵河中Gd正异常后,目前,已在全世界范围的地表水系统中发现了人为源Gd(Gdanth)这种新兴污染物[11]。随着全球经济发展和工业水平的提高,REEs的使用更为广泛,人为源REEs的使用、排放和污染已成为一个全球化的环境问题[12]。以往REEs物源示踪的研究主要集中在地质成因的REEs,常用于示踪土壤、沉积物、岩石等的物质来源。而关于人为源REEs的研究还相对缺乏,并且受检测技术限制直接测定人为源REEs含量十分困难,传统估算人为源REEs的方法难以避免地存在不同程度的误差。
近年来,随着高精密电感耦合等离子体质谱(ICP-MS)及其联用技术的快速发展,对人为源REEs的研究不断深入。2009年,科研人员[13]首次利用亲水离子色谱与电感耦合等离子体质谱联用技术(HILIC-ICP-MS)分析了医院污水和污水处理厂中人为源Gd形态,明确了GBCAs的种类及分布特征,在人为源REEs地球化学示踪及环境风险防控方面具有重要意义。同时,ICP-MS及其联用技术在解决传统分析测试技术难以判断的某些争议性问题方面也表现出突出优势。李晓春等[14]利用激光剥蚀多接收等离子体质谱技术(LA-MC-ICP-MS)对白云鄂博矿床钐钕同位素进行原位分析,为厘清矿床的成矿演化历史提供了关键证据。当前,ICP-MS及其联用技术在REEs物源示踪方面的研究工作发展迅速,并且已取得了大量富有成效的结果。本文主要阐述了REEs地球化学特征(组成、同位素、形态)在物源指示方面的研究进展:①REEs组成、同位素信息在传统物源指示方面发挥重要作用,②REEs化学形态在指示人类活动方面具有明显优势。在此基础上综述了ICP-MS及其联用技术在分析REEs地球化学特征方面的应用,与此同时,对目前的技术瓶颈进行分析并对未来研究方向作了展望。
1. 稀土元素用于物源示踪的多维信息
在REEs物源示踪研究中,REEs组成、分异特征及同位素分异信息被广泛应用于岩石、矿物等的物源指示研究中;随着人类活动的加剧,人为源REEs越来越多地进入自然环境中,可能会影响地质成因REEs的地球化学特征,进而影响物源示踪结果。REEs赋存形态在示踪人为源REEs方面具有明显优势,因此,本文主要围绕应用于物源示踪研究的REEs组成及分异特征、同位素分异特征以及赋存形态三方面内容进行概述。
1.1 稀土元素组成及分异特征
REEs的地球化学行为独特,其在岩石等介质中的环境行为等皆由其原子结构和性质所决定[5, 15]。REEs原子结构的特点是原子序数大与电子层结构独特,上述特性决定了自然界中REEs的相对丰度呈现规律性变化,遵循“奇偶效应”(Oddo-Harkins),相较于偶数原子序数,奇数原子序数REEs(La例外)在自然界中丰度较低[15-16]。为消除这种自然现象,REEs配分模式的研究通常需要进行“标准化”处理。目前较多用到的标准化物质包括:澳大利亚后太古宙页岩(PAAS)[17]、北美页岩(NASC)[18]、上部大陆地壳(UCC)[19]、昆士兰泥(MUQ)[20]、欧洲页岩(EUS)[21]、世界页岩(WSH)[21]。由图 2可知,REEs在这些标准参考物中的分布具有以下特点:从La到Lu,元素的分布量具有呈波浪式逐渐下降的趋势,遵守Oddo-Harkins法则;轻稀土元素(LREE,La~Eu)丰度远高于重稀土元素(HREE,Gd~Lu)。
REEs由于在搬运、风化和沉积等过程中变化较小,化学性质稳定,可以单独用来追踪物源区。例如,杨守业和李从先已成功应用REEs组成及分异特征判别黄河和长江沉积物的主要物质来源[22]。REEs的配分模式有两种:亏损重稀土元素(HREE)和富集轻稀土元素(LREE)[23]。不同的条件导致了REEs分馏和配分模式特征不同,并且相较于其他REEs,Eu和Ce元素对环境的氧化还原情况较为敏感[24-25]。因此,在以往REEs物源指示研究中,REEs总量(∑REEs)、倾斜程度(LREE/HREE)、铈异常(δCe)和铕异常(δEu)以及曲线总体形态的相互对比是进行物源示踪的重要指标。
1.2 稀土元素的同位素分异特征
与REEs含量相比,REEs同位素特征更不易受其他干扰因素的影响[26],因此,可通过将REEs配分模式结合REEs自身的同位素组成进行物质溯源。在REEs中,偶数镧系元素和Y在自然界分布较广,它们有几种稳定同位素,其中含有中子数为82和核子数为偶数的同位素(Ce、Nd、Sm)键能最高、最稳定,它们在自然界分布最广[27]。而Pr、Tb、Ho、Tm和Y等奇数镧系元素仅有一种稳定的同位素,其核子数总是奇数(N+Z),因而在自然界分布较少(仅La为例外)[28]。在自然界中发现REEs的稳定同位素有50多种,各REEs在自然界中的相对丰度如图 3a所示,140Ce含量最高,相对丰度约为26.5%,其次为89Y,约占REEs总量的18.3%。
在REEs示踪体系中,存在Sm-Nd与La-Ce两个长寿命同位素体系。Sm-Nd体系中,母体核素147Sm经α衰变(衰变常数λ=6.54×10-12a-1)形成子体核素143Nd,Sm与Nd的离子半径与化学性质相似,子体143Nd形成后继承母体在晶格中的位置,不易逃逸。Sm-Nd法已广泛应用于地质年龄测定、地幔岩石物源及其成因的研究。例如,王汾连[29]基于REEs和Nd同位素特征信息,得出太平洋深海沉积物主要来自于火山源与陆源的混合的结果[29]。目前,研究普遍认可不同类型岩石的Nd同位素成分具有明显的差异,由图 3b可知,同类岩石,尽管产地不同,却具有相近的Nd同位素成分。拉斑玄武岩和碱性玄武岩Nd同位素比值存在系统差别,这表明它们是从地幔的不同部分导生的;拉斑玄武岩的143Nd/146Nd比值比球粒陨石高,而碱性玄武岩与球粒陨石类似,这可能是地幔分异所导致的结果。
La-Ce体系中,长寿命母体同位素138La经β-蜕变(λ=2.58×10-12a-1)生成138Ce,La和Ce均属于LREE,属于不相容元素,倾向于在地壳中富集[30]。La-Ce是唯一在自然条件下具有可变价衰变子体元素的同位素体系,Ce易被氧化为Ce4+,Ce4+的络合效应与其他REE3+存在显著差异,从而导致Ce与其他REEs发生分馏,进而影响了矿物中138La/142Ce比值和138Ce生成速率;但在还原条件下由地质演变过程引起的La-Ce体系的分馏效应并不明显[31]。Ce独特的地球化学性质决定了La-Ce体系在溯源示踪中具有很好的应用前景,尤其是与Sm-Nd体系的应用相结合。La-Ce与Sm-Nd参数变化能够综合反映矿物成矿过程中经历的地质变化,并进一步为物质的溯源研究提供重要线索。
1.3 稀土元素的赋存形态特征
REEs属于过渡类元素,但紧靠金属类元素,REEs的金属性很强,也属于典型的亲氧元素,在自然界多以氧化物或硅酸盐、磷酸盐、碳酸盐、氟碳酸盐等形式存在,而极少以硫酸盐或硫化物的形式出现[33]。因REEs与氧和氟的电负性相差很大,故REEs主要以离子键形式存在,其次为共价键[34]。当溶液的碱度增高,且有F-、CO32-、SO42-、PO43-等存在时,易以络合物的形式迁移[35]。REEs在自然水体中既可以自由离子(REE3+)的形态存在,又可以配合离子和吸附态形式出现,水体中REEs主要以溶解相、悬浮相或和沉积相三种相态存在[36]。绝大多数河流中溶解态REEs相对于页岩呈现一定程度的HREE富集,而悬浮态REEs则表现出LREE相对富集的特征。很多研究证实了溶解态REEs的分布模式在很大程度上受源区REEs的地球化学特征的影响[37]。
随着REEs在人类社会的使用越来越广泛,不可避免地会导致越来越多的人为源REEs进入水体等自然环境中,可能会影响地质成因REEs的分配特征,进而降低了物源示踪研究结果的准确性。人为源REEs的稳定性较强,以GBCAs为例,Gd-DTPA络合物在半年时间内仅减少了约6%[38],并且大环状Gd螯合物更稳定、环境半衰期更长[39],人为源REEs已成为影响生态环境安全的潜在新兴污染物。德国等发达国家自然水体中检出的GBCAs以大环型为主,线性GBCAs检出频率较低,譬如,2021年发表的研究成果显示未在日本水体中检出线性GBCAs[40]。2019年,中国排放的Gdanth预估超过十吨[11],并且随着医疗水平的提高和人口老龄化的发展,中国GBCAs使用量和排放量将持续增加,排入自然环境中的GBCAs也将越来越多,GBCAs等人为源REEs络合物的分析测定将为人为源REEs的示踪研究、指示人类活动提供重要依据。
2. 用于稀土元素物源示踪的电感耦合等离子体质谱联用技术
用于REEs地球化学特征研究的仪器分析技术众多,ICP-MS及其联用技术的出现与不断发展,显著推动了REEs在物源指示方面的广泛应用。本文分别围绕REEs含量、同位素及形态分析技术进行了详细阐述。
2.1 单一稀土元素分析技术
二十世纪国内外用于REEs含量分析的测试技术主要包括X射线荧光光谱法(XRF)、电感耦合等离子体发射光谱法(ICP-OES)、仪器中子活化分析法(INAA)等[41-42]。目前,这些方法在很大程度上已被ICP-MS取代(图 4),ICP-MS不仅具有ICP-OES多元素同时分析的能力,而且与ICP-OES相比,具有更高的检测灵敏度,适合于各类环境样品中痕量和超痕量元素检测[43]。由图 5可知,与同位素稀释质谱技术(ID-MS)和INAA相比,ICP-MS及ICP-OES可以测定除放射性元素钷(Po)外的其他REEs含量;相较于ICP-OES,除Gd外,ICP-MS测定标准物质BCR-1中其他REEs的准确度较高。尽管ICP-MS在分析REEs方面具有很高的灵敏度和准确度,但由于分析样品本身的复杂性,样品的前处理和检测过程对结果的准确性影响同样不容忽视。张祎玮等[45]比较了敞口酸溶、密闭消解、微波消解和碱熔4种消解样品前处理方法对土壤REEs测定结果的影响,确定并优化了以微波消解为前处理、ICP-MS测定REEs的分析方法。
近三十年来,由于准确、灵敏的ICP-MS的广泛应用,研究人员从各种地质体内获取了大量的REEs分析数据,这有力地促进了REEs地球化学研究的发展。高娟琴等[46]采用ICP-MS分析了白云鄂博矿区土壤等环境介质中REEs含量,研究结果表明,矿区矿石、土壤、植物等样品均表现出富Ce的特征,并且三者之间REEs含量特征表现出明显继承性。何伟等[47]基于ICP-MS对宁东煤田延安组泥岩、砂岩以及煤层顶(底)板REEs含量的分析数据,得出REEs含量未受到成岩作用影响,可以用于对原始沉积物源的判别的结果。贾玉衡等[48]基于ICP-MS对石榴子石中REEs分析结果,得到石榴子石REEs总量分布不均匀,HREE富集、负δEu的结果。为了系统地研究霓长岩化蚀变矿物微量元素特征与稀土矿化关系,郭东旭等[49]对川西霓长岩化脉中的霓辉石等开展ICP-MS微量元素测试,研究结果也可为碳酸岩型稀土矿床找矿勘查提供科学依据。
2.2 稀土元素同位素分析技术
传统的稀土元素同位素分析方法主要包括ID-MS、热表面电离源质谱法(TIMS)等。由于ID-MS仪器价格昂贵、测试耗费时间较长,并未得到大规模推广应用[50]。20世纪70年代以来,TIMS技术在REEs同位素分析中应用最为广泛。随着同位素分析测试技术的发展,多接收电感耦合等离子体质谱技术(MC-ICP-MS)的出现,显著提高了La-Ce、Sm-Nd同位素的测试速度,MC-ICP-MS已成为经典TIMS技术的重要补充。近二十年来,MC-ICP-MS的不断发展,显著推动了REEs同位素体系在物源指示方面的广泛应用[51]。但是这两种方法都需要繁杂的前处理流程,并且在样品处理过程中破坏了元素的空间分布信息。
激光剥蚀(LA)与MC-ICP-MS联用技术具有较高的元素空间分析能力(约10~100μm),可以原位获得样品内部La-Ce、Sm-Nd同位素组成的空间分布信息,而且与TIMS等分析技术相比,LA-MC-ICP-MS对样品的制备要求大大降低,分析速度大大提高,可以为矿物的成因演化提供重要的参考依据[52],已经成为开展原位微区REEs同位素研究的重要分析工具。然而,相对于TIMS和MC-ICP-MS,LA-MC-ICP-MS技术分析精度降低大约2~3倍[53]。目前,LA-MC-ICP-MS主要用于测定Nd含量比较高(≥100μg/g)的地质样品(如磷灰石、钛矿)的Nd同位素。已有文献研究表明,当Nd含量大于500μg/g时,LA-MC-ICP-MS技术才可以获得精度较高的Nd同位素信息,而这无疑限制了其推广应用[54]。值得注意的是,LA-MC-ICP-MS快速高效、高空间分辨率的优势远远超过了这种精度的降低,并且随着技术的快速发展,在不久的将来,该技术的应用范围将会大大拓宽。
2.3 稀土元素形态分析技术
近年来,科研人员逐步建立了基于离子色谱(IC)与ICP-MS联用技术(IC-ICP-MS)、亲水离子色谱(HILIC)与ICP-MS联用的技术(HILIC-ICP-MS)的人为源REEs的形态分析方法。IC-ICP-MS已成为水体中痕量和超痕量元素形态分析的强有力工具之一。IC与ICP-MS联用的关键是接口问题,由于常规ICP-MS分析中的样品进样是液体,而且IC流动相的流速与ICP-MS的进样流速是相匹配的[55], 因此,IC与ICP-MS的接口不仅容易匹配而且比较简单,通常用聚四氟乙烯管或不锈钢管作为接口, 将IC的流出液直接导入ICP的雾化系统。IC-ICP-MS技术大大简化了样品前处理过程,使元素形态分析的困难大大降低。
HILIC-ICP-MS可以直接测定REEs的物质组成,提供REEs化学形态等“多维”信息,这对物质来源、人类活动具有重要的指示作用[56]。近年来,HILIC-ICP-MS技术已成功应用于医院污水、污水处理厂、地表水、自来水等环境样品中Gdanth化学形态的分析[57-58]。2009年,Künnemeyer等[13]利用HILIC-ICP-MS技术首次分析了医院污水和污水处理厂样品中Gd形态分布特征。2021年,Okabayashi等[40]使用HILIC-ICP-MS技术测定Gd螯合物,将醋酸铵溶液代替有机溶剂作为流动相,使检出限降低至3.4ng/L。形态分析方法的建立为人为源REEs研究提供了含量及形态多维信息,为人们精确解析人为源REEs提供了新的技术手段,具有重要的科学及指示意义。
3. 稀土元素在物源示踪方面的应用
以往REEs物源示踪研究主要集中在岩矿、沉积物等的溯源分析方面,然而,随着REEs在现代社会的应用越来越广泛,人为源REEs在自然环境中检出频率及丰度明显提高。REEs对人类活动的示踪研究逐渐成为近年来REEs物源指示研究的热点之一。
3.1 应用于追踪物质来源
近年来,追踪岩石、土壤、关键元素等的物质来源成为REEs在生物地球化学领域的主要应用之一。科研人员主要根据REEs丰度、同位素分馏等信息,结合相关数理统计模型,完成物质的溯源研究[59-60]。REEs组成、同位素分馏特征信息,可为岩石及矿床的成岩成矿物质来源提供证据。譬如,随着成岩物质来源的不同,花岗岩等成岩矿物呈现出不同的REEs分布模式。幔源型或同熔型花岗岩常呈左高右低的平滑曲线,无负δEu;而来自壳源的花岗岩常具有明显的负δEu,且曲线的倾斜方向变化较大;属于花岗岩化成因的,其REEs型式多呈较平滑的曲线,随着重熔和分异作用的加深,负δEu逐渐增强[5]。
对于土壤、沉积物等环境介质,应用REEs探讨其物质来源及分异形成过程最有成效。例如,黄颖[59]基于REEs含量、分馏特征,结合相关物源指数模型,解译加积型红土的物源信息,结果表明,红土主要受近源物质的影响,物源具有复杂性。齐文菁等[60]基于球粒陨石标准化后的Sm/Nd-δEu物源信息,判别了印度洋东经90°海岭表层沉积物的主要来源,结果显示,北部区域受伊洛瓦底江陆源物质影响显著,而南部区域的表层沉积物最主要来源是苏门答腊岛陆源物质。Guo等[61]基于黄河干流沉积物Nd同位素信息,得出黄河沉积物的εNd沿程变化与近几十年来人类活动对其沉积物源汇过程的影响密切相关。
值得注意的是,REEs也可用于示踪磷(P)这一导致湖泊富营养化的关键营养元素的来源。REEs作为一种重要的物源示踪剂,已广泛应用于土壤侵蚀、泥沙来源等方面的研究[62]。土壤侵蚀物、泥沙作为水体磷的重要来源,因此,REEs示踪技术可能成为示踪农田非点源磷的有效方法。并且这一假设已被很多研究证实,REEs示踪成为识别非点源磷流失的高风险区和防控农业面源污染的有效方法[62]。Wang等[63]基于模拟降雨试验,研究了REEs和磷随地表径流的流失特征,结果显示,径流中REEs和磷的总损失量显著相关,表明REEs可用于示踪农业非点源磷的损失。
3.2 应用于指示人类活动
通常来说,某一行业在应用中只会使用特定的单个REE而非是REEs群体,因此,单个REE的异常升高现象往往意味着某一特定的人为源输入,进而可以用于示踪人类活动的污染路径及特征[64-66]。譬如,GBCAs因其难以去除而进入水体等自然环境,造成Gd正异常现象[67]。如图 6所示,目前所有大陆均存在Gdanth现象。早期的研究主要集中在欧洲、北美、日本、韩国等医疗水平比较发达的地区[68-69];而最新的报道中,在非洲等相对比较落后的地区也发现了Gdanth异常现象[70]。在中国贵阳市[16]、武汉市[71]、苏州市[72]等地也报道了城市水环境中Gdanth异常现象。这意味着随着全球医疗水平的提高,核磁共振的使用更为普及,Gdanth已成为一个全球性的环境现象。
在稀土资源开发利用的矿区、稀土材料电子垃圾拆解区这两个人类活动密集区域,存在区域周边各类环境介质中REEs含量大幅升高的情况,这对当地生态环境及人类健康造成一定风险[73-75]。譬如,中国典型稀土矿区——白云鄂博冬季总悬浮颗粒物中∑REEs可达297.49ng/m3,高出荷兰地区(4.056ng/m3)数十倍,PM10中单个REE浓度比其他地区高出1~2个数量级[73]。研究证实,电子垃圾中的REEs在自然条件下(pH=7.8的河水)就可被浸出释放,在酸性矿山废水浸出作用下,电子废弃物渗滤液中∑REEs高达575±294ng/g[74-75]。Ma等[76]在广东北江悬浮颗粒物样品中观察到了较高的REEs,并推测其与广东清远电子垃圾回收活动有关。并且值得注意的是,电子垃圾加工和进口国的被试者,以及矿区儿童血液中REEs含量显著高于对照组[77-78]。
4. 结语与展望
REEs地球化学特征是其进行物源指示研究的主要依据。实践证明,REEs分异特征、同位素组成、赋存形态可为追踪物源、指示人类活动提供有力的证据。高精度ICP-MS仪器分析及其联用技术的推广应用显著推动了REEs在物源示踪方面的研究,但目前在REEs物源指示研究方面尚有一些不足,未来有望在以下方面加强研究。
(1) 以布点采样调查、检测分析和模型模拟为主的传统REEs物源示踪技术体系,面临着成本较高、采样分析时间较长等技术瓶颈。未来可开发小型便携式、快速简易的REEs检测技术,拓展REEs物源指示的应用领域。
(2) 以往研究通常选择REEs含量或同位素信息进行物质溯源,具有局限性。未来可开发融合REEs含量、同位素、形态等多维信息进行物源指示研究。多源数据融合可增加样品被检地球化学特征信息,为物源解析研究提供更多有力的证据。
(3) 随着社会经济的发展及工业化水平的提高,人为源REEs越来越多地进入水体等自然环境中,干扰多介质环境中REEs组成,降低基于地质成因REEs物质溯源结果的准确性。因此,未来研究需首先考虑周边人类活动是否对研究区域造成显著影响,再进行传统物源指示分析。
要点
(1) 总结了可用于物源示踪研究的REEs主要地球化学特征(组成、同位素、形态)。
(2) 高精度、低检出限ICP-MS及其联用技术的发展推动了人为源REEs的研究。
(3) 归纳了REEs在示踪自然及人为物质来源,特别是在指示人类活动方面的应用。
HIGHLIGHTS
(1) The main geochemical characteristics (composition, isotopes, and speciation) of REEs that can be used for source tracing studies are summarized.
(2) The development of high-precision, low-detection-limit ICP-MS and its coupling techniques has promoted the study of anthropogenic sources of REEs.
(3) The applications of REEs in tracing natural and anthropogenic sources, especially in indicating human activities are summarized.
-
图 1 REEs的离子电位与化学性质关系图[3]
Figure 1.
图 5 不同分析方法获得的玄武岩标准物质BCR-1(USGS)的REEs数据[44]
Figure 5.
-
[1] Garzanti E, Andò S. Heavy mineral concentration in modern sands: Implications for provenance interpretation[J]. Developments in Sedimentology, 2007, 58: 517-545.
[2] 张瀚之, 鹿化煜, 周亚利, 等. 渭河流域沉积矿物组合定量分析及示踪[J]. 沉积学报, 2022, 40(4): 944-956. doi: 10.14027/j.issn.1000-0550.2022.021
Zhang H Z, Lu H Y, Zhou Y L, et al. Quantitative analysis of the clastic mineral composition in sediments from the Weihe River Basin by scanning electron microscope and its implication for provenance[J]. Acta Sedimentologica Sinica, 2022, 40(4): 944-956. doi: 10.14027/j.issn.1000-0550.2022.021
[3] 陈德潜, 陈刚. 实用稀土元素地球化学[M]. 北京: 冶金工业出版社, 1990: 1-263.
Chen D Q, Chen G. Practical rare earth element geochemistry[M]. Beijing: Metallurgical Industry Press, 1990: 1-263.
[4] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferro-manganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60: 1709-1725. doi: 10.1016/0016-7037(96)00063-4
[5] Liu H, Guo H, Pourret O, et al. Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process[J]. Applied Geochemistry, 2021, 134: 105089. doi: 10.1016/j.apgeochem.2021.105089
[6] 密蓓蓓, 刘升发, 窦衍光, 等. 东海周边中小型河流沉积物锶钕铅同位素组成及其物源示踪意义[J]. 海洋通报, 2017, 36(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201704012.htm
Mi B B, Liu S F, Dou Y G, et al. Sr-Nd-Pb isotopic composition in the sediments of the middle and small rivers around the East China Sea and the implications for tracing sediment sources[J] Marine Science Bulletin, 2017, 36(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201704012.htm
[7] Wang S Y, Xiong Z N, Wang L Q, et al. Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling[J]. Environmental Pollution, 2022, 309: 119717. doi: 10.1016/j.envpol.2022.119717
[8] 王咏梅, 赵仕林, 赵凡, 等. 农用稀土肥料对环境影响的研究[J]. 四川师范大学学报(自然科学版), 2004, 27(2): 202-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200402022.htm
Wang Y M, Zhao S L, Zhao F, et al. Study on the effect of agricultural rare earth fertilizers on environment[J]. Journal of Sichuan Normal University (Natural Science Edition), 2004, 27(2): 202-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200402022.htm
[9] Klaver G, Verheul M, Bakker I, et al. Anthropogenic rare earth element in rivers: Gadolinium and lanthanum partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands)[J]. Applied Geochemistry, 2014, 47: 186-197. doi: 10.1016/j.apgeochem.2014.05.020
[10] Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143: 245-255. doi: 10.1016/0012-821X(96)00127-6
[11] Wang T, Wu Q X, Wang Z H, et al. Anthropogenic gadolinium accumulation and rare earth element anomalies of river water from the middle reach of Yangtze River Basin, China[J]. ACS Earth and Space Chemistry, 2021, 5: 3130-3139. doi: 10.1021/acsearthspacechem.1c00238
[12] Dulski P, Moeller P, Pekdeger A. Comparison of gado-pentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment[J]. Hydrogeology Journal, 2011, 19: 823-834. doi: 10.1007/s10040-011-0713-6
[13] Künnemeyer J, Terborg L, Meermann B, et al. Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method[J]. Environmental Science and Technology, 2009, 43: 2884-2890. doi: 10.1021/es803278n
[14] Li X C, Yang K F, Spandler C, et al. The effect of fluid-aided modification on the Sm-Nd and Th-Pb geochronology of monazite and bastnasite: Implication for resolving complex isotopic age data in REE ore systems[J]. Geochimica et Cosmochimica Acta, 2021, 300: 1-24. doi: 10.1016/j.gca.2021.02.028
[15] Balaram V. Rare earth elements: A review of applica-tions, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
[16] 张珏. 贵阳市地表水中溶解态稀土元素和抗生素分布特征与相关关系研究[D]. 贵阳: 贵州大学, 2021: 3-7.
Zhang Y. Distribution characteristics and correlation of dissolved rare earth elements and antibiotics in surface water of Guiyang City[D]. Guiyang: Guizhou University, 2021: 3-7.
[17] Pourmand A, Dauphas N, Ireland T J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances[J]. Chemical Geology, 2012, 291: 38-54. doi: 10.1016/j.chemgeo.2011.08.011
[18] Mclennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[19] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
[20] Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia[J]. Geochimicaet Cosmochimica Acta, 2005, 69: 1041-1058. doi: 10.1016/j.gca.2004.08.020
[21] Bau M, Schmidt K, Pack A, et al. The European Shale: An improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe[J]. Applied Geochemistry, 2018, 90: 142-149. doi: 10.1016/j.apgeochem.2018.01.008
[22] 杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199904008.htm
Yang S Y, Li C X. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments[J]. Geochemistry, 1999, 28(4): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199904008.htm
[23] 魏亮, 郭华明, 谢振华, 等. 北京平原沉积物稀土元素地球化学特征及物源意义[J]. 地学前缘, 2010, 17(6): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006009.htm
Wei L, Guo H M, Xie Z H, et al. Rare earth elements geochemistry and its implication for sediment provenance in the Beijing Plain[J]. Earth Science Frontiers, 2010, 17(6): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006009.htm
[24] 陈晓薇, 陈秀玲, 周笑笑, 等. 霍童溪表层沉积物稀土元素特征及其物源示踪分析[J]. 地球环境学报, 2021, 12(5): 526-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202105006.htm
Chen X W, Chen X L, Zhou X X, et al. Characteristics and trace analysis of rare earth elements in surface sediment of Huotong River[J]. Journal of Earth Environment, 2021, 12(5): 526-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202105006.htm
[25] Wang L Q, Han X X, Liang T, et al. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2019, 217: 851-857.
[26] 高永娟, 凌文黎, 邱啸飞, 等. La-Ce同位素体系应用现状和研究进展[J]. 地球科学——中国地质大学学报, 2011, 36(1): 33-42, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101005.htm
Gao Y J, Ling W L, Qiu X F, et al. La-Ce isotopic system: Application status and advances[J]. Earth Science-Journal of China University of Geosciences, 2011, 36(1): 33-42, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101005.htm
[27] 李超, 孙鹏程, 孟会明, 等. 一种新的稀有金属矿床定年技术: 微区原位Sm-Nd定年[J]. 岩石学报, 2022, 38(2): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202009.htm
Li C, Sun P C, Meng H M, et al. A new age determination technique for rare metal deposits: In situ Sm-Nd dating[J]. Acta Petrologica Sinica, 2022, 38(2): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202009.htm
[28] Kaczor-Kurzawa D, Wysocka I, Porowski A, et al. The occurrence and distribution of rare earth elements in mineral and thermal waters in the Polish Lowlands[J]. Journal of Geochemical Exploration, 2022, 237: 106984.
[29] 王汾连. 太平洋深海粘土的REE和Nd同位素特征及物源意义[J]. 地质论评, 2017, 63(S1): 201-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1098.htm
Wang F L. The characteristics of REE and Nd isotopes and their provenance significance of the pelagic sediments from the Pacific Ocean[J]. Geological Review, 2017, 63(S1): 201-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1098.htm
[30] Liu Y Z, Masuda A, Inoue M. Measurement of isotopes of light rare earth elements in the form of oxide ions: A new development in thermal ionization mass spectrometry[J]. Analytical Chemistry, 2000, 72(13): 3001-3005.
[31] Migaszewski Z M, Gałuszka A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 45: 429-471.
[32] 李梅. 稀土元素及其分析化学[M]. 北京: 化学工业出版社, 2009: 1-30.
Li M. Rare earth elements and their analytical chemistry[M]. Beijing: Chemical Industry Press, 2009: 1-30.
[33] 王玉洁, 刘蓓蓓, 万全, 等. 稀土元素在土壤中的释放与迁移研究进展[J]. 生态环境学报, 2021, 30(3): 644-654. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202103023.htm
Wang Y J, Liu B B, Wan Q, et al. The release and transport behavior of rare earth elements in soil: A review[J]. Ecology and Environmental Sciences, 2021, 30(3): 644-654. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202103023.htm
[34] 韩松, 黄忠祥, 贾秀勤, 等. 云南个旧打磨山钙质夕卡岩及石榴石的稀土元素地球化学特征[J]. 岩石学报, 1993, 9(2): 192-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199302009.htm
Han S, Huang Z X, Jia X Q, et al. The geochemical characteristics of rare earth elements in skarns and their garnets from Damoshan area, Gejiu District, Yunnan Province[J]. Acta Petrologica Sinica, 1993, 9(2): 192-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199302009.htm
[35] Millero F J. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength[J]. Geochimica et Cosmochimica Acta, 1992, 56: 3123-3132.
[36] 孟秀丽. 赣南小流域水体中溶解态稀土元素地球化学及微量元素组成[D]. 北京: 首都师范大学, 2008: 1-9.
Meng X L. Geochemistry and trace element composition of dissolved rare earth elements in a small watershed in southern Jiangxi[D]. Beijing: Capital Normal University, 2008: 1-9.
[37] Tweed S O, Weaver T R, Cartwright I, et al. Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: An example from the Dandenong Ranges, southeast Australia[J]. Chemical Geology, 2006, 234: 291-307.
[38] Dulski P, Moeller P, Pekdeger A. Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment[J]. Hydrogeology, 2011, 19(4): 823-834.
[39] Horstmann M, de Vega R G, Bishop D P, et al. Determination of gadolinium MRI contrast agents in fresh and oceanic waters of Australia employing micro-solid phase extraction, HILIC-ICP-MS and bandpass mass filtering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(4): 767-775.
[40] Okabayashi S, Kawane L, Mrabawani N Y, et al. Specia-tion analysis of gadolinium-based contrast agents using aqueous eluent-hydrophilic interaction liquid chromato-graphy hyphenated with inductively coupled plasma-mass spectrometry[J]. Talanta, 2021, 222: 121531.
[41] 王金土. 黄海表层沉积物稀土元素地球化学[J]. 地球化学, 1990(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199001004.htm
Wang J T. REE geochemistry of surficial sediments from the Yellow Sea of China[J]. Geochemistry, 1990(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199001004.htm
[42] 唐诵六, 孙景信, 屠树德, 等. 广州土壤中的稀土元素[J]. 土壤学报, 1980, 17(4): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198004000.htm
Tang S L, Sun D X, Tu S D, et al. Rare earth elements in some soils from Guangzhou[J]. Journal of Soil, 1980, 17(4): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198004000.htm
[43] 龚子珊. 电感耦合等离子体质谱生物样品基质效应和分析方法的研究[D]. 天津: 天津大学, 2020: 1-14.
Gong Z S. Study on matrix effect and analysis methods in biological samples by in inductively coupled plasma mass spectrometry[D]. Tianjin: Tianjin University, 2020: 1-14.
[44] Balaram V. Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials[J]. Trends in Analytical Chemistry, 1996, 15: 475-486.
[45] 张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202103015.htm
Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma mass spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202103015.htm
[46] 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202102210026
Gao J Q, Yu Y, Li Y K, et al. Distribution characteristics of rare earth elements and heavy metals in a soil-plant system at Bayan Obo rare earth mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202102210026
[47] 何伟, 吴亮, 魏向成, 等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试, 2022, 41(6): 962-977. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111080169
He W, Wu L, Wei X C, et al. Geochemical characteristics of three kinds of rare elements in middle Jurassic Yan' an Formation of Ningdong coalfield and their indicative significance to sedimentary environment[J]. Rock and Mineral Analysis, 2022, 41(6): 962-977. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111080169
[48] 贾玉衡, 钱建平. 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060007
Jia Y H, Qian J P. Study on REE distribution and mineralogical characteristics of different garnets by electron probe and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060007
[49] 郭东旭, 刘琰, 李自静, 等. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征[J]. 岩矿测试, 2020, 39(6): 896-907. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060003
Guo D X, Liu Y, Li Z J, et al. Determination of trace element compositions of altered minerals in fenitization veins by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 896-907. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060003
[50] 高永娟. La-Ce同位素分析技术及其在岩浆侵位和沉积过程氧化环境研究中的应用[D]. 北京: 中国地质大学(北京), 2010: 1-32.
Gao Y J. La-Ce isotope analytical method and its application to oxidizing environment study during magmatic intrusion and sedimentary processes[D]. Beijing: China University of Geosciences (Beijing), 2010: 1-32.
[51] Sindern S. Analysis of rare earth elements in rock and mineral samples by ICP-MS and LA-ICP-MS[J]. Physical Sciences Reviews, 2017, 2(2): 20160066.
[52] 杨岳衡, 杨进辉, 吴福元, 等. 激光原位LA-MC-ICP-MS测定地质样品Sm-Nd同位素方法新进展[J]. 矿物岩石地球化学通报, 2016, 35(3): 422-431, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603005.htm
Yang Y H, Yang J H, Wu F Y, et al. New progresses in analytical methods of in situ Sm-Nd isotope measurement of natural geological samples by laser ablation multi-collector ICP mass spectrometry[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2016, 35(3): 422-431, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603005.htm
[53] Foster G L, Vance D. In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(3): 288-296.
[54] Foster G L, Carter A. Insights into the patterns and locations of erosion in the Himalaya-A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth and Planetary Science Letters, 2007, 257(3-4): 407-418.
[55] 王艳萍, 郭于枫, 张玲帆. IC-ICP-MS联用技术同时测定饮用水中砷、铬、碘、溴四种元素的不同形态[J]. 分析试验室, 2021, 40(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202107012.htm
Wang Y P, Guo Y F, Zhang L F. Simultaneous determination for elements species of arsenic, chromium, iodide and bromine in drinking water by IC-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2021, 40(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202107012.htm
[56] Idee J M, Port M, Raynal I, et al. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: A review[J]. Fundamental and Clinical Pharmacology, 2006, 21: 335-335.
[57] Raju C S K, Cossmer A, Scharf H, et al. Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 55-61.
[58] Lindner U, Lingott J, Richter S, et al. Analysis of gad-olinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 2415-2422.
[59] 黄颖. 中亚热带地区加积型红土稀土元素分馏特征及环境意义[D]. 杭州: 浙江师范大学, 2020: 1-28.
Huang Y. Rare earth elements fractionation charateristics and its envrionmental significance of aggradation red earth in middle subtropical area[D]. Hangzhou: Zhejiang Normal University, 2020: 1-28.
[60] 齐文菁, 李小艳, 范德江, 等. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202202009.htm
Qi W J, Li X Y, Fan D J, et al. Rare earth element composition of the surface sediments from the ninety east ridge and its implications for provenance[J]. Marine Geology and Quaternary Geology, 2022, 42(2): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202202009.htm
[61] Guo Y L, Li C, Wang C Y, et al. Sediment routing and anthropogenic impact in the Huanghe River catchment, China: An investigation using Nd isotopes of river sediments[J]. Water Resources Research, 2021, 57(9): e2020WR028444.
[62] 汤振权, 刘刚, 许文年. 稀土元素示踪技术及其在土壤侵蚀研究中的应用[J]. 中国稀土学报, 2011, 29(5): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201105002.htm
Tang Z Q, Liu G, Xu W N. REE tracing method and application in soil erosion[J]. Journal of the Chinese Rare Earth Society, 2011, 29(5): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201105002.htm
[63] Wang L Q, Liang T, Kleinman P J A, et al. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources[J]. Chemosphere, 2011, 85: 1075-1079.
[64] Han R, Wang Z, Shen Y, et al. Anthropogenic Gd in urban river water: A case study in Guiyang, SW China[J]. Elementa-Science of the Anthropocene, 2021, 9(1): 00147.
[65] Macke M, Quarles C D, Sperling M, et al. Fast and auto-mated monitoring of gadolinium-based contrast agents in surface waters[J]. Water Research, 2021, 207: 117836.
[66] Brunjes R, Hofmann T. Anthropogenic gadolinium in fre-shwater and drinking water systems[J]. Water Research, 2020, 182: 115966.
[67] Liu Y, Wu Q, Jia H, et al. Anthropogenic rare earth elements in urban lakes: Their spatial distributions and tracing application[J]. Chemosphere, 2021, 300: 134534.
[68] Kim I, Kim S H, Kim G. Anthropogenic gadolinium in lakes and rivers near metrocities in Korea[J]. Environmental Science-Processes and Impacts, 2020, 22: 144-151.
[69] da Costa A R B, Rousseau T C C, Maia P D, et al. Anthropogenic gadolinium in estuaries and tropical Atlantic coastal waters from Fortaleza, northeast Brazil[J]. Applied Geochemistry, 2021, 127: 104908.
[70] Sundriyal S, Shukla T, Tripathee L, et al. Natural versus anthropogenic influence on trace elemental concentration in precipitation at Dokriani Glacier, central Himalaya, India[J]. Environmental Science and Pollution Research, 2019, 27: 3462-3472.
[71] 贾会鹏. 武汉市地表水体中稀土元素分布特征及人为源Gd的来源研究[D]. 贵阳: 贵州大学, 2020: 1-14.
Jia H P. Distribution characteristics of rare earth elements and anthropogenic Gd in surface water in Wuhan City[D]. Guiyang: Guizhou University, 2020: 1-14.
[72] Gao S L, Wang Z H, Wu Q X, et al. Urban geochemistry and human-impacted imprint of dissolved trace and rare earth elements in a high-tech industrial city, Suzhou[J]. Elementa-Science of the Anthropocene, 2021, 9: 00151.
[73] Wang L Q, Liang T. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 2014, 88: 23-29.
[74] Dang D H, Zhang Z. Hazardous motherboards: Changes in metal contamination related to the evolution of electronic technologies[J]. Environmental Pollution, 2021, 268: 115731.
[75] Brewer A, Dror I, Berkowitz B. Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles[J]. Chemosphere, 2022, 287: 132217.
[76] Ma L, Dang D H, Wang W, et al. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters[J]. Environmental Pollution, 2019, 244: 190-201.
[77] Henríquez-Hernández L A, Boada L D, Carranza C, et al. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants[J]. Environment International, 2017, 109: 20-28.
[78] 范广勤, 刘志刚, 郑辉烈, 等. 稀土暴露对儿童免疫功能影响的研究[J]. 中国公共卫生, 2002, 18(8): 952-953. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW200208029.htm
Fan G Q, Liu Z G, Zheng H L, et al. Study on effects of exposure to rare earth elements on function of immune system of children[J]. Chinese Journal of Public Health, 2002, 18(8): 952-953. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW200208029.htm
[79] Nigro A, Sappa G, Barbieri M. Boron isotopes and rare earth elements in the groundwater of a landfill site[J]. Journal of Geochemical Exploration, 2018, 190: 200-206.
[80] Möller P, Morteani G, Dulski P. Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy)[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(3): 225-239.
[81] Pereto C, Coynel A, Lerat-Hardy A, et al. Corbicula flum-inea: A sentinel species for urban rare earth element origin[J]. Science of the Total Environment, 2020, 732: 138552.
[82] Stojanovic A, Kogelnig D, Mitteregger B, et al. Major and trace element geochemistry of superficial sediments and suspended particulate matter of shallow saline lakes in eastern Austria[J]. Chemie Der Erde-Geochemistry, 2009, 69(3): 223-234.
[83] Lawrence M G, Bariel D G. Tracing treated wastewater in an inland catchment using anthropogenic gadolinium[J]. Chemosphere, 2010, 80(7): 794-799.
[84] Barbieri M, Andrei F, Nigro A, et al. The relationship between the concentration of rare earth elements in landfill soil and their distribution in the parent material: A case study from Cerreto, Roccasecca, central Italy[J]. Journal of Geochemical Exploration, 2020, 213: 106492.
[85] Amorim A M, Sodre F F, Rousseau T C C, et al. Assessing rare-earth elements and anthropogenic gadolinium in water samples from an urban artificial lake and its tributaries in the Brazilian Federal District[J]. Microchemical Journal, 2019, 148: 27-34.
-