中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

富碳质地质样品Re-Os同位素体系研究进展

李欣尉, 李超, 周利敏, 赵鸿, 屈文俊. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试, 2023, 42(2): 221-238. doi: 10.15898/j.ykcs.202207200135
引用本文: 李欣尉, 李超, 周利敏, 赵鸿, 屈文俊. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试, 2023, 42(2): 221-238. doi: 10.15898/j.ykcs.202207200135
LI Xinwei, LI Chao, ZHOU Limin, ZHAO Hong, QU Wenjun. A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(2): 221-238. doi: 10.15898/j.ykcs.202207200135
Citation: LI Xinwei, LI Chao, ZHOU Limin, ZHAO Hong, QU Wenjun. A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(2): 221-238. doi: 10.15898/j.ykcs.202207200135

富碳质地质样品Re-Os同位素体系研究进展

  • 基金项目:
    国家自然科学基金青年基金项目(41703059);中国地质科学院基本科研业务费项目(CSJ-2021-05X)
详细信息
    作者简介: 李欣尉,硕士,高级工程师,主要从事Re-Os同位素分析方法研究。E-mail:lixinwei-re-os@qq.com
  • 中图分类号: O657.63

A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples

  • Re-Os同位素定年技术在富有机质沉积岩、低变质沉积岩、湖相沉积物、煤、油气藏样品等富碳质地质样品的尝试和成功应用,使其成为直接厘定地层沉积时代、重大地质事件发生时限和机制、古环境重建、油气藏直接定年、油气演化过程推演等研究的关键技术手段。然而,受到富碳质地质样品中极低的Re和Os丰度、采样方式以及地质作用等因素的影响,很多样品的Re-Os等时线年龄和初始Os同位素比值精度超过10%,不能有效地评价海水Os的真实来源和地质作用程度,影响了对不同沉积体系及油气演化过程中Re和Os的化学行为和Re-Os等时线年龄地质意义的理解。由此,本文从富碳质地质样品的Re-Os化学行为和地质应用进展出发,对富碳质地质样品Re-Os同位素分析过程中的采样和取样方式、溶样方法、分离富集方式和标准物质选择四方面进行了总结和完善。指出以沉积速率为采样间距参考,通过预处理方式提高样品的均匀性,使用流程空白更低、对同位素分馏影响更小的溶样方法和分离富集方式进行Re-Os同位素分析,以基质匹配的地质标样进行数据监控可进一步提高样品Re-Os同位素分析质量,有助于不同类型富碳质地质样品Re和Os赋存机制研究、Re-Os同位素分析技术开发及地质应用拓展。

  • 加载中
  • 图 1  不同成熟度黑色页岩样品Re-Os含量及斜率(引自Li等[9],2021)。黑色虚线为不成熟和低成熟样品趋势线,黄色虚线为成熟样品趋势线,红色虚线为过成熟样品趋势线

    Figure 1. 

    图 2  文献中已报道的富有机质沉积岩Re-Os同位素数据统计:(a)Re含量范围分布;(b)Os含量范围分布;(c)Re-Os等时线年龄和初始Os值误差范围分布

    Figure 2. 

    图 3  不同文献中的页岩标样SBC-1(a~d)、油页岩标样SGR-1b(e~h)和原油标样RM8505(i~l)的Re-Os数据(IAR、HC、HH和HNaC分别代表逆王水、HNO3-H2O2、H2SO4-CrO3和H2SO4-Na2CrO4溶样法;黑色虚线为所有数据平均值,阴影部分为所有数据1倍标准偏差)

    Figure 3. 

    表 1  国内外实验室Re-Os同位素分析方法、流程空白及适用地质样品对比

    Table 1.  Comparison of commonly used Re-Os isotopic analysis methods, procedural blank and applicable geological samples

    溶样方法 优点 不足 主要适用地质样品 流程空白 数据来源
    Re含量(pg) Os含量(pg)
    H2SO4-CrO3 选择性溶样
    减少碎屑溶解
    数据更精确
    高Re空白
    CrO3纯化困难
    环保问题
    有害健康
    富有机质沉积
    岩油气藏样品
    40
    16.8±0.06
    16.8±0.4
    10.8±1.5
    <0.1
    0.43±0.06
    0.4±0.1
    0.12±0.05
    [104]
    [22]
    [8]
    [105]
    逆王水 全流程空白最低
    试剂易纯化
    高有机碳样品
    易爆炸
    硫化物
    富有机质沉积岩
    油气藏样品
    岩浆岩
    0.67±0.18
    3.7±4.7
    4.3±1.8
    0.37±0.06
    0.34±0.226
    0.36±0.22
    [105]
    [75]
    [59]
    HNO3-H2O2 全流程空白较低
    试剂易纯化
    易爆炸 富有机质沉积岩
    岩浆岩
    8~12 0.8±0.2 [59]
    H2SO4-Na2CrO4 全流程空白低
    Re空白水平低
    试剂易纯化
    环保问题
    有害健康
    富有机质沉积岩 1~2 0.6 [60]
    下载: 导出CSV

    表 2  已报道的富碳质地质标样Re-Os同位素数据

    Table 2.  Reported Re-Os data of carbon-enriched geological references materials

    标样编号 研制机构 标样类型 Re含量(ng/g) Os含量(pg/g) 187Re/188Os 187Os/188Os 数据来源
    SBC-1 美国地质调查局
    (USGS)
    页岩 11.11±0.14
    (n=43, RSD=1.3%)
    100.2±4.1
    (n=43, RSD=4.1%)
    883.5±46.0
    (n=43, RSD=5.2%)
    5.119±0.270
    (n=43, RSD=5.3%)
    [58, 60, 71]
    SCo-2 美国地质调查局
    (USGS)
    页岩 1.179±0.042
    (n=6, RSD=3.6%)
    1167±6.8
    (n=6, RSD=5.8%)
    57.91±2.95
    (n=6, RSD=5.1%)
    1.596±0.018
    (n=6, RSD=1.2%)
    [71]
    SGR-1b 美国地质调查局
    (USGS)
    油页岩 34.71±0.93
    (n=24, RSD=2.7%)
    0.4541±0.0235
    (n=24, RSD=5.2%)
    448.8±21.4
    (n=24, RSD=4.8%)
    1.787±0.009
    (n=43, RSD=0.5%)
    [59, 71]
    ShTX-1 美国地质调查局
    (USGS)
    钙质富有机质
    页岩
    141.6±0.2
    (n=7, RSD=0.1%)
    617.8±10.4
    (n=7, RSD=1.7%)
    1738±24
    (n=7, RSD=1.4%)
    4.565±0.013
    (n=7, RSD=0.3%)
    [71]
    ShCX-1 美国地质调查局
    (USGS)
    钙质富有机质
    页岩
    13.62±0.14
    (n=7, RSD=1.0%)
    424.3±13.9
    (n=7, RSD=3.3%)
    206.8±7.1
    (n=7, RSD=3.4%)
    2.702±0.017
    (n=7, RSD=0.6%)
    [71]
    JCh-1 日本地质调查局
    (GSJ)
    沉积岩 24.53±4.17
    (n=8, RSD=17.0%)
    5.604±0.375
    (n=12, RSD=6.7%)
    22.97±3.6
    (n=8, RSD=15.7%)
    0.5908±0.0189
    (n=11, RSD=3.2%)
    [74]
    JMS-2 日本地质调查局
    (GSJ)
    沉积岩 126.1±4.1
    (n=9, RSD=3.2%)
    264.4±12.6
    (n=11, RSD=4.8%)
    2.540±0.156
    (n=7, RSD=6.1%)
    0.8138±0.0500
    (n=10, RSD=6.2%)
    [74]
    RM 8505 美国标准局
    (NIST)
    原油 2.228±0.508
    (n=43, RSD=22.8%)
    27.06±3.63
    (n=36, RSD=13.4%)
    445.5±31.5
    (n=36, RSD=7.1%)
    1.531±0.076
    (n=36, RSD=5.0%)
    [67-70, 75]
    下载: 导出CSV
  • [1]

    Cohen A S, Coe A L, Bartlett J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 20-28(3-4): 159-173.

    [2]

    Yamashita Y, Takahashi Y, Haba H, et al. Comparison of reductive accumulation of Re and Os in seawater-sediment systems[J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3458-3475. doi: 10.1016/j.gca.2007.05.003

    [3]

    Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D

    [4]

    Crusius J, Calvert S, Pedersen T, et al. Rhenium and mo-lybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145: 65-78. doi: 10.1016/S0012-821X(96)00204-X

    [5]

    Selby D, Creaser R A. Re-Os geochronology of organic rich sediments: An evaluation of organic matter analysis methods[J]. Chemical Geology, 2003, 200: 225-240. doi: 10.1016/S0009-2541(03)00199-2

    [6]

    Creaser R A, Sannigrahi P, Chacko T, et al. Further eva-luation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. doi: 10.1016/S0016-7037(02)00939-0

    [7]

    Cumming V M, Selby D, Lillis P G, et al. Re-Os geo-chronology and Os isotope fingerprinting of petroleum sourced from a type Ⅰ lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrouspyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56. doi: 10.1016/j.gca.2014.04.016

    [8]

    Rooney A D, Selby D, Lewan M D, et al. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291. doi: 10.1016/j.gca.2011.11.006

    [9]

    Li S J, Wang X C, Wilde S A. Revisiting rhenium-osmium isotopic investigations of petroleum systems: From geochemical behaviours to geological interpretations[J]. Journal of Earth Science, 2021, 32(5): 1226-1249. doi: 10.1007/s12583-020-1066-7

    [10]

    Selby D, Creaser R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J]. Geology, 2005, 33(7): 545-548. doi: 10.1130/G21324.1

    [11]

    Kendall B S, Creaser R A, Selby D. Re-Os geochro-nology of postglacial black shales in Australia: Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9): 729-732. doi: 10.1130/G22775.1

    [12]

    Turgeon S C, Creaser R A, Algeo T J. Re-Os depositional ages and seawater Os estimates for the Frasnian—Famennian boundary: Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261: 649-661. doi: 10.1016/j.epsl.2007.07.031

    [13]

    Kendall B S, Creaser R A, Gordon G W, et al. Re-Os and Mo isotope systematics of black shales from the middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2534-2558. doi: 10.1016/j.gca.2009.02.013

    [14]

    Zhu B, Becker H, Jiang S Y, et al. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China[J]. Precambrian Research, 2013, 225: 67-76. doi: 10.1016/j.precamres.2012.02.002

    [15]

    Tripathy G R, Hannah J L, Stein H J, et al. Re-Os age and depositional environment for black shales from the Cambrian—Ordovician boundary, Green point, western Newfoundland[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1021-1037. doi: 10.1002/2013GC005217

    [16]

    Xu G P, Hannah J L, Stein H J, et al. Cause of upper Triassic climate crisis revealed by Re-Os geochemistry of Boreal black shales[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 222-232. doi: 10.1016/j.palaeo.2013.12.027

    [17]

    Tripathy G R, Hannah J L, Stein H J. Refining the Ju-rassic—Cretaceous boundary: Re-Os geochronology and depositional environment of upper Jurassic shales from the Norwegian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 503: 13-25. doi: 10.1016/j.palaeo.2018.05.005

    [18]

    Ravizza G, Turekain K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262. doi: 10.1016/0016-7037(89)90105-1

    [19]

    Lu X Z, Kendall B, Stein H J, et al. Temporal record of osmium concentrations and 187Os/188Os in organic-rich mudrocks: Implications for the osmium geochemical cycle and the use of osmium as a paleoceanographic tracer[J]. Geochimica et Cosmochimica Acta, 2017, 216: 221-241. doi: 10.1016/j.gca.2017.06.046

    [20]

    李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201907310116

    Li X W, Li C, Zhou L M, et al. Accurate determination of the age of the carbonaceous mudstone of the Ordovician—Silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201907310116

    [21]

    Liu Y, Bagas L, Nie F, et al. Re-Os system of black schist from the Mesoproterozoic Bayan Obo Group, central Inner Mongolia, China and its geological implications[J]. Lithos, 2016, 261: 296-306. doi: 10.1016/j.lithos.2015.11.023

    [22]

    Rooney A D, Chew D M, Selby D. Re-Os geochronology of the Neoproterozoic—Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematic[J]. Precambrian Research, 2011, 185(3-4): 202-214. doi: 10.1016/j.precamres.2011.01.009

    [23]

    Manoel T N, Sebly D, Galvez M E. et al. A pre-Sturtian depositional age of the lower Paraguay Belt, western Brazil, and its relationship to western Gondwana magmatism science direct[J]. Gondwana Research, 2021, 89: 238-246.

    [24]

    Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic systematics in crude oils[J]. Earth and Planetary Science Letters, 2007, 71(2): 378-386.

    [25]

    Finlay A J, Selby D, Osborne M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes[J]. Geology, 2010, 38: 979-982.

    [26]

    Finlay A J, Selby D, Osborne M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478. doi: 10.1130/G31781.1

    [27]

    Finlay A J, Selby D, Osborne M J. Petroleum source rock identification of United Kingdom Atlantic margin oil fields and the western Canadian oil sands using platinum, palladium, osmium and rhenium: Implications for global petroleum systems[J]. Earth and Planetary Science Letters, 2012, 313-314: 95-104. doi: 10.1016/j.epsl.2011.11.003

    [28]

    Meng Q A, Wang X, Huo Q L, et al. Rhenium-osmium (Re-Os) geochronology of crude oil from lacustrine source rocks of the Hailar Basin, NE China[J]. Petroleum Science, 2021, 18: 1-9. doi: 10.1007/s12182-020-00518-x

    [29]

    Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1): 1-15.

    [30]

    李超, 屈文俊, 王登红, 等. 沥青样品铼-锇同位素分析溶解实验研究[J]. 岩矿测试, 2011, 30(6): 688-694. doi: 10.3969/j.issn.0254-5357.2011.06.007 http://www.ykcs.ac.cn/cn/article/id/ykcs_20110606

    Li C, Qu W J, Wang D H, et al. Dissolving experimental research of Re-Os isotope system for bitumen samples[J]. Rock and Mineral Analysis, 2011, 30(6): 688-694. doi: 10.3969/j.issn.0254-5357.2011.06.007 http://www.ykcs.ac.cn/cn/article/id/ykcs_20110606

    [31]

    Wang P, Hu Y, Liu L, et al. Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong antimony deposit, Guizhou Province, China and its geological significance[J]. Acta Geologica Sinica, 2017, 91(6): 2153-2163. doi: 10.1111/1755-6724.13455

    [32]

    Su A, Chen H, Feng Y, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology[J]. Precambrian Research, 2020, 350: 1-14. doi: 10.3969/j.issn.1672-4135.2020.01.001

    [33]

    Zhao B, Li R, Qin X, et al. Biomarkers and Re-Os geo-chronology of solid bitumen in the Beiba Dome, northern Sichuan Basin, China: Implications for solid bitumen origin and petroleum system evolution[J]. Marine and Petroleum Geology, 2021, 126: 1-21.

    [34]

    Selby D, Creaser R A. Direct radiometric dating of hy-drocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295. doi: 10.1126/science.1111081

    [35]

    黄少华, 秦明宽, Selby D, 等. 准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年[J]. 地学前缘, 2018, 25(2): 254-266. doi: 10.13745/j.esf.2018.02.026

    Huang S H, Qin M K, Selby D, et al. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junnggar Basin[J]. Earth Science Frontiers, 2018, 25(2): 254-266. doi: 10.13745/j.esf.2018.02.026

    [36]

    王剑, 付修根, 杜安道, 等. 羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年[J]. 海相油气地质, 2007, 12(3): 21-26. doi: 10.3969/j.issn.1672-9854.2007.03.005

    Wang J, Fu X G, Du A D, et al. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area, northern Tibet, China[J]. Marine Origin Petroleum Geology, 2007, 12(3): 21 -26. doi: 10.3969/j.issn.1672-9854.2007.03.005

    [37]

    Wei S, Fu Y, Liang H, et al. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China[J]. Acta Geochimica, 2018, 37: 323-333. doi: 10.1007/s11631-017-0228-5

    [38]

    Finlay A J, Selby D, Gröcke D R. Tracking the Hirnan-tian glaciation using Os isotopes[J]. Earth and Planetary Science Letters, 2010, 293: 339-348. doi: 10.1016/j.epsl.2010.02.049

    [39]

    赵鸿, 李超, 江小均, 等. Re-Os同位素精确厘定长兴"金钉子"灰岩沉积年龄[J]. 科学通报, 2015, 60(23): 2209-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523007.htm

    Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of limestone from Changxing Permian—Triassic boundary using the Re-Os geochronometer[J]. Chinese Science Bulletin, 2015, 60(23): 2209-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523007.htm

    [40]

    Cohen A S. The rhenium-osmium isotope system: App-lications to geochronological and palaeoenvironmental problems[J]. Journal of the Geological Society, 2004, 161: 729-734. doi: 10.1144/0016-764903-084

    [41]

    Creaser R A, Stasiuk L D. Depositional age of the Dou-glas Formation, northern Saskatchewan, determined by Re-Os geochronology[J]. Geological Survey of Canada Bulletin, 2007, 588(18): 341-346.

    [42]

    Rooney A D, Macdonald F A, Strauss J V, et al. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 51-56. doi: 10.1073/pnas.1317266110

    [43]

    Quitté G, Robin E, Levasseur S, et al. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: Signature of a chondritic impactor[J]. Meteoritics and Planetary Science, 2007, 42(9): 1567-1580. doi: 10.1111/j.1945-5100.2007.tb00591.x

    [44]

    Zaiss J, Ravizza G, Goderis S, et al. A complete Os excursion across a terrestrial Cretaceous—Paleogene boundary at the West Bijou site, Colorado, with evidence for recent open system behavior[J]. Chemical Geology, 2014, 385: 7-16. doi: 10.1016/j.chemgeo.2014.07.010

    [45]

    Jones M M, Sageman B B, Selby D, et al. Regional chrono-stratigraphic synthesis of the Cenomanian—Turonian Oceanic Anoxic Event 2 (OAE2) interval, western interior basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology[J]. GSA Bulletin, 2021, 133: 1090-1104. doi: 10.1130/B35594.1

    [46]

    Yang X, Zhang Z, Li C, et al. Geochemistry and Re-Os geochronology of the organic-rich sedimentary rocks in the Jingtieshan Fe-Cu deposit, North Qilian Mountains, NW China[J]. Journal of Asian Earth Sciences, 2016, 119: 65-77. doi: 10.1016/j.jseaes.2016.01.007

    [47]

    陈玲, 马昌前, 凌文黎, 等. 中国南方存在印支期的油气藏——Re-Os同位素体系的制[J]. 地质科技情报, 2010, 29(2): 95-99. doi: 10.3969/j.issn.1000-7849.2010.02.017

    Chen L, Ma C Q, Ling W L, et al. Indosinian hydrocarbon accumulation in South China: A Re-Os isotope constrain[J]. Geological Science and Technology Information, 2010, 29(2): 95-99. doi: 10.3969/j.issn.1000-7849.2010.02.017

    [48]

    Liu J, Selby D, Zhou H, et al. Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems[J]. Chemical Geology, 2019, 513: 1-22. doi: 10.1016/j.chemgeo.2019.03.004

    [49]

    Mahdaoui F, Reisberg L, Michels R, et al. Effect of the progressive precipitation of petroleum asphaltenes on the Re-Os radioisotope system[J]. Chemical Geology, 2013, 358: 90-100. doi: 10.1016/j.chemgeo.2013.08.038

    [50]

    Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer in the phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. doi: 10.1016/j.gca.2013.04.021

    [51]

    Ge X, Shen C, Selby D, Deng D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44: 491-494. doi: 10.3969/j.issn.1000-8845.2016.04.009

    [52]

    Ge X, Shen C B, Selby D, et al. Neoproterozoic—Cam-brian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen rhenium-osmium geochronology and apatite fission-track analysis[J]. AAPG Bulletin, 2018, 102(8): 1429-1453. doi: 10.1306/1107171616617170

    [53]

    陈郑辉, 李超, 屈文俊, 等. 石墨Re-Os同位素分析及其在成矿年代学中的初步运用[J]. 岩石学报, 2010, 26(10): 3411-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011022.htm

    Chen Z H, Li C, Qu W J, et al. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples[J]. Acta Petrologica Sinica, 2010, 26(10): 3411-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011022.htm

    [54]

    李超, 王登红, 周利敏, 等. 湖南鲁塘石墨矿Re-Os同位素研究[J]. 岩矿测试, 2017, 36(3): 297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704060050

    Li C, Wang D H, Zhou L M, et al. Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J]. Rock and Mineral Analysis, 2017, 36(3): 297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704060050

    [55]

    Kendall B S, Creaser R A, Selby D. 187Re-187Os geo-chronology of Precambrian organic-rich sedimentary rocks[J]. Geological Society London Special Publications, 2009, 326(1): 85-107. doi: 10.1144/SP326.5

    [56]

    Moser J, Wegscheider W, Meisel T, et al. An uncertainty budget for trace analysis by isotope dilution ICP-MS with proper consideration of correlation[J]. Analytical Bioanalytical Chemistry, 2003, 377(1): 97-110. doi: 10.1007/s00216-003-2028-5

    [57]

    刘华, 屈文俊, 王英滨, 等. 用三氧化铬-硫酸溶剂对黑色页岩铼-锇定年方法初探[J]. 岩矿测试, 2008, 27(4): 245-249. doi: 10.3969/j.issn.0254-5357.2008.04.002 http://www.ykcs.ac.cn/cn/article/id/ykcs_20080487

    Liu H, Qu W J, Wang Y B, et al. Primary study on Re-Os isotopic dating of black shale using CrO3-H2SO4-Carius tube-inductively coupled plasma mass spectrometry system[J]. Rock and Mineral Analysis, 2008, 27(4): 245-249. doi: 10.3969/j.issn.0254-5357.2008.04.002 http://www.ykcs.ac.cn/cn/article/id/ykcs_20080487

    [58]

    Li J, Yin L. Rhenium-osmium isotope measurements in marine shale reference material SBC implications for method validation and quality control[J]. Geostandards and Geoanalytical Research, 2019, 43: 497-507. doi: 10.1111/ggr.12267

    [59]

    Yin L, Li J, Liu J, et al. Precise and accurate Re-Os isotope dating of organic-rich sedimentary rocks by thermal ionization mass spectrometry with an improved H2O2-HNO3 digestion procedure[J]. International Journal of Mass Spectrometry, 2017, 421: 263-270. doi: 10.1016/j.ijms.2017.07.013

    [60]

    Li X W, Li C, Pei H X, et al. Purified Na2CrO4-H2SO4: A new low blank medium for Re-Os dating of black shale[J]. Geostandards and Geoanalytical Research, 2021, 45(2): 313-323. doi: 10.1111/ggr.12375

    [61]

    李超, 屈文俊, 周利敏, 等. Carius管直接蒸馏快速分离锇方法研究[J]. 岩矿测试, 2010, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100104

    Li C, Qu W J, Zhou L M, et al. Rapid separation of osmium by direct distillation with Carius tube[J]. Rock and Mineral Analysis, 2010, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100104

    [62]

    周利敏, 高炳宇, 王礼兵, 等. Carius管直接蒸馏快速分离锇方法的改进[J]. 岩矿测试, 2012, 31(3): 413-418. doi: 10.3969/j.issn.0254-5357.2012.03.005 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120305

    Zhou L M, Gao B Y, Wang L B, et al. Improvements on the separation method of osmium by direct distillation in Carius tube[J]. Rock and Mineral Analysis, 2012, 31(3): 413-418. doi: 10.3969/j.issn.0254-5357.2012.03.005 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120305

    [63]

    李超, 屈文俊, 杜安道, 等. 铼-锇同位素定年法中丙酮萃取铼的系统研究[J]. 岩矿测试, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090307

    Li C, Qu W J, Du A D, et al. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating[J]. Rock and Mineral Analysis, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090307

    [64]

    Morgan J W, Walker R J. Isotopic determinations of rhe-nium and osmium in meteorites by using fusion, distillation and ion-exchange separations[J]. Analytica Chimica Acta, 1989, 222(1): 291-300. doi: 10.1016/S0003-2670(00)81904-2

    [65]

    Morgan J W, Golightly D W, Dorrzapf Jr A F. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry[J]. Talanta, 1991, 38(3): 259-265. doi: 10.1016/0039-9140(91)80045-2

    [66]

    Markey R, Stein H, Morgan J. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS[J]. Talanta, 1998, 45(5): 935-946. doi: 10.1016/S0039-9140(97)00198-7

    [67]

    Hurtig N C, Georgiev S V, Zimmerman A, et al. Re-Os geochronology for the NIST RM8505 crude oil: The importance of analytical protocol and uncertainty[J]. Chemical Geology, 2020, 539: 1-17.

    [68]

    Georgiev S V, Zimmerman A, Yang G, et al. Comparison of chemical procedures for Re-isotopic measurements by N-TIMS[J]. Chemical Geology, 2018, 483: 151-161. doi: 10.1016/j.chemgeo.2018.03.006

    [69]

    DiMarzio J M, Georgiev S V, Stein H J, et al. Residency of rhenium and osmium in a heavy crude oil[J]. Geochimica et Cosmochimica Acta, 2018, 220: 180-200. doi: 10.1016/j.gca.2017.09.038

    [70]

    Sen I S, Peucker-Ehrenbrink B. Determination of os-mium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer[J]. Analytical Chemistry, 2014, 86(6): 2982-2988. doi: 10.1021/ac403413y

    [71]

    Wang M J, Chu Z Y, Meisel T C, et al. Determination of Re, Os, Ir, Ru, Pt, Pd mass fractions and 187Os/188Os ratios of organic-rich geological reference materials[J]. Geostandards and Geoanalytical Research, 2022, 46: 333-349. doi: 10.1111/ggr.12423

    [72]

    Meisel T, Moser J. Platinum-group element and rhenium concentrations in low abundance reference materials[J]. Geostandards and Geoanalytical Research, 2004, 28: 233-250. doi: 10.1111/j.1751-908X.2004.tb00740.x

    [73]

    Ishikawa A, Senda R, Suzuki K, et al. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials[J]. Chemical Geology, 2014, 384: 27-46. doi: 10.1016/j.chemgeo.2014.06.013

    [74]

    Nozaki T, Suzuki K, Ravizza G, et al. A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 131-148. doi: 10.1111/j.1751-908X.2011.00125.x

    [75]

    Georgiev S V, Stein H J, Hannah J L, et al. Re-Os dating of maltenes and asphaltenes within single samples of crude oil[J]. Geochimica et Cosmochimica Acta, 2016, 179: 53-75. doi: 10.1016/j.gca.2016.01.016

    [76]

    Liu J, Selby D, Obermajer M, et al. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657. doi: 10.1306/12081717105

    [77]

    Creaser R, Szatmari P, Milani E. Extending Re-Os shale geochronology to lacustrine depositional systems: A case study from the major hydrocarbon source rocks of the Brazilian Mesozoic marginal basins[C]//Proceedings of the 33rd International Geological Congress. Oslo, 2008.

    [78]

    Poirier A, Hillaire-Marcel C. Improved Os-isotope stra-tigraphy of the Arctic Ocean[J]. Geophysical Research Letters, 2011, 38: 14607-14611.

    [79]

    Cumming V M, Selby D, Lillis P G. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering[J]. Earth and Planetary Science Letters, 2012, 359-360: 194-205. doi: 10.1016/j.epsl.2012.10.012

    [80]

    刘桂建, 彭子成, 杨刚. 煤中黄铁矿的铼-锇同位素含量及其地质意义[J]. 地学前缘, 2006, 13(1): 211-215. doi: 10.3321/j.issn:1005-2321.2006.01.028

    Liu G J, Peng Z C, Yang G. Abundance and geological significance of rhenium and osmium in pyrite samples from coals[J]. Earth Science Frontiers, 2006, 13(1): 211-215. doi: 10.3321/j.issn:1005-2321.2006.01.028

    [81]

    Goswami V, Hannah J L, Stein H J. Why terrestrial coals cannot be dated using the Re-Os geochronometer: Evidence from the Finnmark Platform, southern Barents Sea and the Fire Clay coal horizon, central Appalachian Basin[J]. International Journal of Coal Geology, 2018, 188: 121-135. doi: 10.1016/j.coal.2018.02.005

    [82]

    Tripathy G R, Hannah J L, Stein H J, et al. Radiometric dating of marine-influenced coal using Re-Os geochronology[J]. Earth and Planetary Science Letters, 2015, 432: 13-23. doi: 10.1016/j.epsl.2015.09.030

    [83]

    Rotich E K, Handler M R, Naeher S, et al. Re-Os geo-chronology and isotope systematics, and organic and sulfur geochemistry of the middle-late Paleocene Waipawa Formation, New Zealand: Insights into early Paleogene seawater Os isotope composition[J]. Chemical Geology, 2020, 536: 1-18.

    [84]

    Harris N B, Mnich C A, Selby D, et al. Minor and trace element and Re-Os chemistry of the upper Devonian Woodford Shale, Permian Basin, West Texas: Insights into metal abundance and basin processes[J]. Chemical Geology, 2013, 356: 76-93. doi: 10.1016/j.chemgeo.2013.07.018

    [85]

    Liu Z Y, Selby D, Hackley P C, et al. Evidence of wild-fires and elevated atmospheric oxygen at the Frasnian—Famennian boundary in New York (USA): Implications for the late Devonian mass extinction[J]. Geological Society of America Bulletin, 2020, 132: 2043-2054. doi: 10.1130/B35457.1

    [86]

    Pietras J T, Dennett A, Sebly D, et al. The role of organic matter diversity on the Re-Os systematics of organic-rich sedimentary units: Insights into the controls of isochron age determinations from the lacustrine Green River Formation[J]. Chemical Geology, 2022, 604: 120939. doi: 10.1016/j.chemgeo.2022.120939

    [87]

    Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record[J]. Terra Nova, 2000, 12: 205-219. doi: 10.1046/j.1365-3121.2000.00295.x

    [88]

    Cohen A S. The rhenium-osmium isotope system: App-lications to geochronological and palaeoenvironmental problems[J]. Journal of the Geological Society, 2004, 161: 729-734. doi: 10.1144/0016-764903-084

    [89]

    李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm

    Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J]. Acta Geoscientica Sinica, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm

    [90]

    Goto K T, Sekine Y, Suzuki K, et al. Redox conditions in the atmosphere and shallow-marine environments during the first Huronian deglaciation: Insights from Os isotopes and redox-sensitive elements[J]. Earth & Planetary Science Letters, 2013, 376: 145-154.

    [91]

    李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    Li C, Qu W J, Wang D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    [92]

    沈传波, Selby D, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014

    Shen C B, Selby D, Mei L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014

    [93]

    Huc A Y, Nederlof P, Debarre R, et al. Pyrobitumen occurrence and formation in a Cambro—Ordovician sandstone reservoir, Fahud Salt Basin, North Oman[J]. Chemical Geology, 2000, 168: 99-112. doi: 10.1016/S0009-2541(00)00190-X

    [94]

    Mahdaoui F, Michels R, Reisberg L, et al. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum[J]. Geochimica et Cosmochimica Acta, 2015, 158: 1-21. doi: 10.1016/j.gca.2015.02.009

    [95]

    Smoliar M I, Walker R J, Morgan J W. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites[J]. Science, 1996, 271: 1099-1102. doi: 10.1126/science.271.5252.1099

    [96]

    杜安道, 赵敦敏, 王淑贤, 等. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]. 岩矿测试, 2001, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002 http://www.ykcs.ac.cn/cn/article/id/ykcs_20010472

    Du A D, Zhao D M, Wang S X, et al. Precise Re-Os dating of molybdenite by ID-NTIMS with Carius tube sample preparation[J]. Rock and Mineral Analysis, 2001, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002 http://www.ykcs.ac.cn/cn/article/id/ykcs_20010472

    [97]

    屈文俊, 杜安道. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003 http://www.ykcs.ac.cn/cn/article/id/ykcs_20030467

    Qu W J, Du A D. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius tube sample digestion[J]. Rock and Mineral Analysis, 2003, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003 http://www.ykcs.ac.cn/cn/article/id/ykcs_20030467

    [98]

    梁树平, 屈文俊, 杜安道, 等. 两种质谱仪在辉钼矿铼-锇年龄测定中的应用比较[J]. 岩矿测试, 2004, 23(4): 268-272. doi: 10.3969/j.issn.0254-5357.2004.04.007 http://www.ykcs.ac.cn/cn/article/id/ykcs_20040475

    Liang S P, Qu W J, Du A D, et al. Comparison of Re-Os dating of molybdenite samples between two types of mass spectrometric determination[J]. Rock and Mineral Analysis, 2004, 23(4): 268-272. doi: 10.3969/j.issn.0254-5357.2004.04.007 http://www.ykcs.ac.cn/cn/article/id/ykcs_20040475

    [99]

    Baioumy H M, Eglinton L B, Peucker-Ehrenbrink B. Rhenium-osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt[J]. Chemical Geology, 2011, 285(1-4): 70-81. doi: 10.1016/j.chemgeo.2011.02.026

    [100]

    Ravizza G, Peucker-Ehrenbrink B. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record[J]. Science, 2003, 302(5649): 1392-1395. doi: 10.1126/science.1089209

    [101]

    CariusL. Ueber die elementaranalyse organischer Ver-bindungen[J]. Justus Liebigs Annalen der Chemie, 1860, 116(1): 1-30. doi: 10.1002/jlac.18601160102

    [102]

    Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis[J]. Analytical Chemistry, 1995, 67(13): 2136-2141. doi: 10.1021/ac00109a036

    [103]

    Cohen A S, Waters F G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry[J]. Analytica Chimica Acta, 1996, 332(2-3): 269-275. doi: 10.1016/0003-2670(96)00226-7

    [104]

    Pašava J, Oszczepalski S, Du A D. Re-Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment[J]. Mineralium Deposita, 2010, 45: 189-199. doi: 10.1007/s00126-009-0269-8

    [105]

    Kendall B S, Ackenb D V, Creaser R A. Depositional age of the early Paleoproterozoic Klipputs Member, Nelani Formation (Ghaap Group, Transvaal Supergroup, South Africa) and implications for low-level Re-Os geochronology and Paleoproterozoic global correlations brian[J]. Precambrian Research, 2013, 237: 1-12. doi: 10.1016/j.precamres.2013.08.002

    [106]

    Birck J L, Barman M R, Capmas F. Re-Os isotopic measurements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x

    [107]

    Nakanishi N, Yokoyama T, Ishikawa A. Refinement of the micro-distillation technique for isotopic analysis of geological samples with pg-level osmium contents[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 231-243. doi: 10.1111/ggr.12262

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1106
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2022-07-20
修回日期:  2022-08-19
录用日期:  2022-11-02
刊出日期:  2023-03-28

目录