中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

快速连续提取沉积物中还原性无机硫的实验方法与应用

茅昌平, 杜苏明, 贾志敏, 于刚, 王耀, 饶文波. 快速连续提取沉积物中还原性无机硫的实验方法与应用[J]. 岩矿测试, 2023, 42(3): 576-586. doi: 10.15898/j.ykcs.202207220139
引用本文: 茅昌平, 杜苏明, 贾志敏, 于刚, 王耀, 饶文波. 快速连续提取沉积物中还原性无机硫的实验方法与应用[J]. 岩矿测试, 2023, 42(3): 576-586. doi: 10.15898/j.ykcs.202207220139
MAO Changping, DU Suming, JIA Zhimin, YU Gang, WANG Yao, RAO Wenbo. Experimental Method and Application of Rapid and Continuous Extraction of Reduced Inorganic Sulfur from Sediments[J]. Rock and Mineral Analysis, 2023, 42(3): 576-586. doi: 10.15898/j.ykcs.202207220139
Citation: MAO Changping, DU Suming, JIA Zhimin, YU Gang, WANG Yao, RAO Wenbo. Experimental Method and Application of Rapid and Continuous Extraction of Reduced Inorganic Sulfur from Sediments[J]. Rock and Mineral Analysis, 2023, 42(3): 576-586. doi: 10.15898/j.ykcs.202207220139

快速连续提取沉积物中还原性无机硫的实验方法与应用

  • 基金项目:
    江苏省自然科学基金项目(BK20191304)
详细信息
    作者简介: 茅昌平,博士,副教授,主要从事地质环境及水文地球化学研究。E-mail:maochangping@hhu.edu.cn
  • 中图分类号: O637.31

Experimental Method and Application of Rapid and Continuous Extraction of Reduced Inorganic Sulfur from Sediments

  • 还原性无机硫是沉积物硫中最活跃的部分,其含量变化控制沉积物中铁、磷及重金属等元素的地球化学行为,在地质过程和环境污染方面都具有至关重要的影响。化学连续提取法是目前沉积物中硫形态提取基本方法,但常用的冷扩散法处理单个样品耗时长,难以实现对大批量样品的快速连续提取。为实现快速、准确地测定沉积物样品各形态还原性无机硫的含量,本文采用热蒸馏法,改进基于前人的三步提取过程,通过优化实验装置预先制备实验所需的二氯化铬溶液,实现了样品还原性无机硫形态的快速连续提取;以过氧化氢为氧化剂,将提取的各形态硫氧化为$\mathrm{SO}_4^{2-}$后采用离子色谱进行检测。选取三峡库区沉积物样品进行重复实验检验,得到提取酸挥发性硫、黄铁矿硫、元素硫的标准偏差(RSD,n=3)分别为5.26%、1.22%和3.09%,重复性较好。进一步对酸挥发性硫、黄铁矿硫、元素硫的加标回收率进行测定,得到这三种硫形态的回收率分别为92.8%、93.6%、94.1%。本实验方法采用的热蒸馏法对单个硫形态提取时间为1.5h,用时较短,玻璃装置连接便捷、操作简单,分析检测准确度好,实现了一套装置对沉积物还原性无机硫形态的连续提取,可适用于大批量样品的硫形态快速提取与检测。

  • 加载中
  • 图 1  沉积物还原性无机硫连续提取装置

    Figure 1. 

    图 2  连续提取沉积物中还原性无机硫流程图

    Figure 2. 

    图 3  (a) 三峡库区采样点分布;(b) 三峡沉积物与太湖表层沉积物还原性无机硫含量对比[30]

    Figure 3. 

    图 4  三峡库区沉积物还原性无机硫形态季节性组成特征

    Figure 4. 

    表 1  重复实验与加标实验结果

    Table 1.  Results of repeated experiment and spike recovery in AVS, CRS, and ES procedures.

    硫形态 重复实验 加标实验(回收率)
    第一次实验(μmol/g) 第二次实验(μmol/g) 第三次实验(μmol/g) 平均值(μmol/g) RSD(%) 第一次实验(%) 第二次实验(%) 第三次实验(%) 平均值(%) RSD(%)
    酸挥发性硫(AVS) 0.20 0.19 0.18 0.19 5.26 91.6 93.2 93.6 92.8 1.14
    黄铁矿硫(CRS) 3.13 3.06 3.12 3.10 1.22 93.4 95.7 91.7 93.6 2.14
    元素硫(ES) 0.38 0.38 0.36 0.37 3.09 94.6 93.8 93.9 94.1 0.46
    下载: 导出CSV

    表 2  三峡沉积物与太湖表层沉积物还原性无机硫的含量

    Table 2.  Composition of AVS, CRS, and ES in sediments of the Three Gorges Reservoir area and Taihu Lake.

    采样地区 酸挥发性硫(μmol/g) 元素硫(μmol/g) 黄铁矿硫(μmol/g)
    三峡库区平均值(本研究, n=16) 0.22 0.50 4.37
    太湖梅梁湾北部[30] 1.00 2.70 10.20
    太湖西五里湖[30] 1.90 0.60 10.30
    下载: 导出CSV
  • [1]

    Wang J, Chen J, Guo J, et al. Speciation and transfor-mation of sulfur in freshwater sediments: A case study in southwest China[J]. Water Air Soil Pollut, 2017, 228(10): 392. doi: 10.1007/s11270-017-3580-5

    [2]

    毛立, 孙志高, 陈冰冰, 等. 闽江河口互花米草入侵湿地土壤无机硫赋存形态及其影响因素[J]. 生态学报, 2021, 41(12): 4840-4852. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202112018.htm

    Mao L, Sun Z G, Chen B B, et al. Variations of inorganic sulfur fractions and main influencing factors in marsh soils with different years of spartina alterniflora invasion in the Min River Estuary[J]. Acta Ecologica Sinica, 2021, 41(12): 4840-4852. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202112018.htm

    [3]

    Lu Q Q, Bai J H, Yan D H, et al. Sulfur forms in wetland soils with different flooding periods before and after flow-sediment regulation in the Yellow River Delta, China[J]. Journal of Cleaner Production, 2020, 276(8): 122969.

    [4]

    陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128. doi: 10.15898/j.cnki.11-2131/td.201804160045 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201804160045

    Chen W R. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128. doi: 10.15898/j.cnki.11-2131/td.201804160045 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201804160045

    [5]

    Jiang M, Sheng Y Q, Liu Q Q, et al. Conversion mecha-nisms between organic sulfur and inorganic sulfur in surface sediments in coastal rivers[J]. Science of the Total Environment, 2021, 752: 141829. doi: 10.1016/j.scitotenv.2020.141829

    [6]

    陈冰冰, 孙志高, 孙文广, 等. 外源氮输入对生长季黄河口碱蓬湿地土壤无机硫形态变化特征的影响[J]. 水土保持学报, 2018, 32(5): 277-286. doi: 10.13870/j.cnki.stbcxb.2018.05.044

    Chen B B, Sun Z G, Sun W G, et al. Effects of exogenous nitrogen enrichment on variations of inorganic sulfur fractions in soils of suaeda salsa marsh in the Yellow River Estuary during the growing season[J]. Journal of Soil and Water Conservation, 2018, 32(5): 277-286. doi: 10.13870/j.cnki.stbcxb.2018.05.044

    [7]

    Huerta-Diaz M A, Tessier A, Carignan R. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments[J]. Applied Geochemistry, 1998, 13(2): 213-233. doi: 10.1016/S0883-2927(97)00060-7

    [8]

    刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006110089

    Liu W, Hu J D, Yang H X, et al. Research progress on elemental speciation analysis by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006110089

    [9]

    李力, 王小静, 刘季花. 沉积物中酸可挥发性硫化物的分析方法研究[J]. 海洋与湖沼, 2015, 46(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201501012.htm

    Li L, Wang X J, Liu J H. Analytical method of acid volatile sulfide in sediment[J]. Oceanologia et Limnologia Sinica, 2015, 46(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201501012.htm

    [10]

    徐程, 杨斌, 朱雪菁, 等. 大风江口海域沉积物酸可挥发性硫化物、重金属分布及风险评价[J]. 环境科学研究, 2020, 33(6): 1530-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202006026.htm

    Xu C, Yang B, Zhu X Q, et al. Distribution and risk assessment of acid volatile sulfide and heavy metals in sediments of Dafengjiang River Estuary[J]. Research of Environmental Sciences, 2020, 33(6): 1530-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202006026.htm

    [11]

    Souza L R, Knöller K, Ladeira A C Q. Sulfur isotope fractionation and sequential extraction to assess metal contamination on lake and river sediments[J]. Journal of Soils and Sediments, 2016, 16: 1986-1994. doi: 10.1007/s11368-016-1410-9

    [12]

    Nriagu J O, Soon Y K. Distribution and isotopic com-position of sulfur in lake sediments of northern Ontario[J]. Geochimica et Cosmochimica Acta, 1985, 49(3): 823-834. doi: 10.1016/0016-7037(85)90175-9

    [13]

    Duan W, Coleman M L, Pye K. Determination of reduced sulphur species in sediments—An evaluation and modified technique[J]. Chemical Geology, 1997, 141(3): 185-194.

    [14]

    曹爱丽, 周桂平, 胡姝, 等. 崇明东滩湿地沉积物中还原无机硫的形态特征[J]. 复旦学报(自然科学版), 2010, 49(5): 612-617. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201005013.htm

    Cao A L, Zhou G P, Hu S, et al. Morphological characteristics of reduced inorganic sulfur in sediments of Dongtan Wetland in Chongming[J]. Journal of Fudan University (Natural Science), 2010, 49(5): 612-617. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201005013.htm

    [15]

    Hsieh Y P, Yang C H. Diffusion methods for the deter-mination of reduced inorganic sulfur species in sediments[J]. Limnology & Oceanography, 1989, 34(6): 1126-1130.

    [16]

    Neretin L N, Böttcher M E, Jørgensen B B, et al. Pyriti-zation processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093.

    [17]

    Burton E D, Sullivan L A, Bush R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9): 2759-2766.

    [18]

    黄志丁, 王军, 逯海, 等. 电感耦合等离子体质谱法测定硫时不同形态硫的影响[J]. 岩矿测试, 2012, 31(1): 77-82. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120110

    Huang Z D, Wang J, Lu H, et al. The effect on sulfur species during determination of sulfur by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 77-82. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120110

    [19]

    张媛媛, 林学辉, 贺行良, 等. 离子色谱法同时测定海洋沉积物中氯和硫[J]. 分析科学学报, 2015, 31(2): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201502021.htm

    Zhang Y Y, Lin X H, He X L, et al. Determination of chlorine and sulfur in marine sediment by ion chromatography[J]. Journal of Analytical Science, 2015, 31(2): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201502021.htm

    [20]

    Chen Y Q, Ge J W, Huang T, et al. Restriction of sulfate reduction on the bioavailability and toxicity of trace metals in Antarctic lake sediments[J]. Marine Pollution Bulletin, 2020, 151: 110807.

    [21]

    石友昌, 陈贵仁, 赵萌生, 等. 酸溶-电感耦合等离子体发射光谱法和燃烧-红外吸收法测定不同类型地球化学样品中的硫[J]. 岩矿测试, 2022, 41(4): 663-672. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202108200104

    Shi Y C, Chen G R, Zhao M S, et al. Determination of sulfur in different types of geochemical samples by ICP-OES with acid dissolution and combustion-infrared absorption spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202108200104

    [22]

    姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048

    Jiang Y J, Li X, Jiang H L, et al. Determination of sulfurin soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048

    [23]

    Hsieh Y P, Shieh Y N. Analysis of reduced inorganic sulfur by diffusion methods: Improved apparatus and evaluation for sulfur isotopic studies[J]. Chemical Geology, 1997, 137(3): 255-261.

    [24]

    李肖, 赵新如, 周芬琦, 等. 安徽庐江钟山尾矿区河流水体硫形态及硫同位素分布特征[J]. 环境化学, 2021, 40(6): 1787-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202106016.htm

    Li X, Zhao X R, Zhou F Q, et al. Distribution characteristics of sulfur species and isotopes in sediments of rivers around Zhongshan tailing at Lujiang County, Anhui Province[J]. Environmental Chemistry, 2021, 40(6): 1787-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202106016.htm

    [25]

    王小芳, 李方晓, 黄涛, 等. 安徽铜陵铜尾矿硫形态及硫同位素分布特征[J]. 中国环境科学, 2019, 39(4): 1664-1671. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201904045.htm

    Wang X F, Li F X, Huang T, et al. Distribution characteristics of sulfur species and isotopes in a copper tailing at Tongling, Anhui Province[J]. China Environ-mental Science, 2019, 39(4): 1664-1671. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201904045.htm

    [26]

    程思海, 陈道华, 雷知生. 使用元素分析仪测定海洋沉积物中的硫化物[J]. 岩矿测试, 2011, 30(1): 63-66. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110113

    Cheng S H, Chen D H, Lei Z S. Determination of sulfide in marine sediments by elemental analyzer[J]. Rock and Mineral Analysis, 2011, 30(1): 63-66. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110113

    [27]

    Sheng Y Q, Sun Q Y, Shi W J, et al. Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China[J]. Environmental Earth Sciences, 2015, 74(2): 1151-1160.

    [28]

    吴松峻, 汪旋, 季秋忆, 等. 太湖西岸典型区域沉积物的硫铁分布特征及环境意义[J]. 湖泊科学, 2019, 31(4): 950-960. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201904006.htm

    Luo S J, Wang X, Ji Q Y, et al. Iron-sulfur distribution and its environmental significance in three typical areas of western Lake Taihu[J]. Journal of Lake Sciences, 2019, 31(4): 950-960. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201904006.htm

    [29]

    Chen Y Q, Shen L L, Huang T, et al. Transformation of sulfur species in lake sediments at Ardley Island and Fildes Peninsula, King George Island, Antarctic Peninsula[J]. Science of tThe Total Environment, 2020, 703: 135591.

    [30]

    尹洪斌, 范成新, 丁士明, 等. 太湖沉积物中无机硫的化学特性[J]. 中国环境科学, 2008, 28(2): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200802019.htm

    Yin H B, Fan C X, Ding S M, et al. The chemical characteristics of inorganic sulfur in Taihu Lake sediments[J]. China Environmental Science, 2008, 28(2): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200802019.htm

    [31]

    Leonard E N, Mattson V R, Benoit D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota Lakes[J]. Hydrobiologia, 1993, 271(2): 87-95.

    [32]

    朱瑾灿, 吴雨琛, 尹洪斌. 太湖蓝藻聚集区沉积物硫形态的时空变异特征[J]. 中国环境科学, 2017, 37(12): 4690-4700. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201712040.htm

    Zhu J C, Wu Y C, Yin H B. Spatial and temporal variation of sulfur speciation in sediments from cyanobacteria accumulation in Taihu Lake, China[J]. China Environmental Science, 2017, 37(12): 4690-4700. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201712040.htm

    [33]

    Howard D E, Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: Seasonal and spatial changes in sediment AVS[J]. Environmental Toxicology and Chemistry: An International Journal, 1993, 12(6): 1051-1057.

    [34]

    Oehm N J, Luben T J, Ostrofsky M L. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA[J]. Hydrobiologia, 1997, 345(1): 79-85.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1078
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2022-07-22
修回日期:  2022-12-04
录用日期:  2023-01-18
刊出日期:  2023-05-28

目录