中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析

李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试, 2023, 42(4): 809-822. doi: 10.15898/j.ykcs.202208270160
引用本文: 李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试, 2023, 42(4): 809-822. doi: 10.15898/j.ykcs.202208270160
LI Lijun, LIU Qiang. Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province[J]. Rock and Mineral Analysis, 2023, 42(4): 809-822. doi: 10.15898/j.ykcs.202208270160
Citation: LI Lijun, LIU Qiang. Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province[J]. Rock and Mineral Analysis, 2023, 42(4): 809-822. doi: 10.15898/j.ykcs.202208270160

黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析

  • 基金项目: 中国地质调查局地质调查项目“松嫩平原水文地质调查”(DD20190340)
详细信息
    作者简介: 李丽君,硕士,正高级工程师,从事岩矿测试及地质矿产方法研究。E-mail:475876904@qq.com
    通讯作者: 刘强,硕士,正高级工程师,从事水文地质及水资源调查评价。E-mail:94778933@qq.com
  • 中图分类号: X523;X131.2

Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province

More Information
  • 近年来随着人类活动增加、工业废水的大量排放以及农业氮肥过量施用,使得地下水中“三氮”(即硝酸盐氮、氨氮、亚硝酸盐氮)污染问题愈加严重,对人体带来潜在健康风险。通过地下水“三氮”污染分布及来源作出解析,对于开展污染源头防控具有重要的现实意义。本文以黑龙江省海伦地区浅层地下水作为研究对象,采用气相分子吸收光谱法(GMA)及电感耦合等离子体质谱法(ICP-MS)测定了地下水中“三氮”及其他金属元素的检出情况,应用内梅罗综合污染指数法对地下水中“三氮”划分水质污染等级,综合运用Pearson相关性分析、正定矩阵因子分析法(PMF)等方法,识别和定量解析污染源及贡献。结果表明:①研究区地下水中硝酸盐氮含量范围在0.021~123.05mg/L之间,平均浓度为15.27mg/L;氨氮含量范围在 ND~3.91mg/L之间,平均浓度为0.33mg/L;亚硝酸盐含量范围在ND~0.65mg/L之间。与《地下水质量标准》(GB/T 14848—2017)Ⅲ类水指标对比,硝酸盐氮超标率为20.0%,氨氮超标率为12.5%。②内梅罗综合污染指数评价结果表明,研究区地下水水质污染等级一级至三级中度污染地下水占比为92.5%,整体上水质“三氮”污染较轻。海伦地区“三氮”空间分布整体上呈现出氨氮、硝酸盐氮流域中心区近端含量高、远端含量低的趋势。硝酸盐氮及氨氮超标点主要分布在研究区中部的人类活动密集区域。亚硝酸盐氮在空间分布上沿海伦河流向呈现出北高南低的趋势。③正定矩阵因子分析模型(PMF)源解析结果表明,硝酸盐氮主要来源于生活与工业复合源;亚硝酸盐氮主要来源于自然源;氨氮主要来源于生活与农业复合源。与中南部长三角武进地区太湖平原、西南部成都平原及东南部广花盆地地下水相比,海伦地区氨氮含量偏低,硝酸盐氮均值则均高于中南部地区。“三氮”的源解析结果呼应了东三省尤其是黑龙江部分地区“三氮”含量较高的分布特征。海伦地区地下水“三氮”污染程度整体上相对较轻,人类活动对地下水中“三氮”分布的影响较大。

  • 加载中
  • 图 1  研究区地下水采样点及“三氮”含量空间分布示意图

    Figure 1. 

    图 2  基于PMF的各因子对地下水中“三氮”及重金属等含量分布的贡献率

    Figure 2. 

    表 1  样品测试质量控制结果统计

    Table 1.  Statistics of recovery rate and relative deviation.

    分析项目加标回收率
    (80%~120%)
    实验室重复样相对偏差
    (≤15%)
    Mn90.9%~110.6%3.40
    Cd89.6%~113.6%2.40
    Pb85.0%~105.0%5.10
    Zn85.6%~90.2%12.6
    Cu83.0%~95.0%11.4
    Co84.0%~94.0%11.2
    Ni82.0%~89.0%11.8
    As97.0%~107.0%4.10
    Hg85.0%~98.3%14.5
    NO3 -N82.1%~96.0%11.0
    NH4 +-N83.0%~89.0%11.9
    NO2 -N82.2%~92.0%13.4
    F82.3%~91.1%13.2
    Cl85.0%~92.5%12.4
    SO4 2−83.0%~90.0%13.0
    下载: 导出CSV

    表 2  内梅罗综合污染指数分级标准16

    Table 2.  Nemerow comprehensive pollution index classification standard16.

    内梅罗综合
    污染指数 F
    污染等级污染程度 内梅罗综合
    污染指数 F
    污染等级污染程度
    F≤0.8未污染 4.25<F≤7.2较重污染
    0.80<F≤2.5轻度污染F≥7.2严重污染
    2.5<F≤4.25中度污染
    下载: 导出CSV

    表 3  研究区地下水中“三氮”含量统计

    Table 3.  Statistics of ammonia nitrogen, nitrate nitrogen, and nitrite nitrogen contents in groundwater.

    统计项目硝酸盐氮
    含量
    氨氮
    含量
    亚硝酸盐氮含量
    最大值(mg/L)123.053.910.65
    最小值(mg/L)0.021ND(未检出)ND(未检出)
    平均值(mg/L)15.270.330.12
    标准偏差28.560.790.26
    变异系数(100%)1.872.422.27
    《地下水质量标准》(GB/T 14848—2017)Ⅲ类水(mg/L)200.51.0
    偏度2.523.662.43
    峰度6.4713.665.94
    检出率(%)10077.590.0
    超标率(%)2012.50
    下载: 导出CSV

    表 4  研究区地下水内梅罗综合污染指数(F)评价结果

    Table 4.  Evaluation results of Nemerow comprehensive pollution index in groundwater in the study area.

    内梅罗综合污染
    指数(F)范围
    污染等级污染程度样品数量
    (件)
    占比
    (%)
    F≤0.8未污染2665
    0.80<F≤2.5轻度污染1025
    2.5<F≤4.25中度污染12.5
    4.25<F≤7.2较重污染37.5
    F≥7.2严重污染00
    下载: 导出CSV

    表 5  地下水中“三氮”与重金属及阴离子的Pearson相关性系数

    Table 5.  Pearson correlation coefficient of heavy metals and negative ions in the groundwater.

    组分MnCdPbZnCuCoNiAsHgNO3 −NNH4 +−NNO2 −NFClSO4 2−
    Mn 1
    Cd −0.166 1
    Pb 0.151 0.220 1
    Zn 0.086 0.191 0.172 1
    Cu 0.085 −0.037 0.469** 0.196 1
    Co 0.380* 0.196 0.423** 0.137 0.112 1
    Ni −0.026 0.103 0.191 0.155 0.009 0.400* 1
    As 0.302 −0.160 0.396* −0.135 0.020 0.326* 0.031 1
    Hg −0.103 −0.047 −0.090 0.005 0.014 −0.016 0.385* −0.103 1
    NO3 −N −0.304 0.370* −0.038 −0.204 0.060 0.329* 0.319* −0.146 −0.117 1
    NH4 +−N 0.059 −0.107 −0.055 0.040 −0.067 −0.138 −0.157 0.106 −0.075 −0.132 1
    NO2 −N 0.181 −0.146 −0.101 −0.212 −0.028 0.327* −0.095 0.167 0.003 −0.169 −0.033 1
    F 0.082 0.195 0.189 0.509** 0.080 −0.029 −0.195 0.312* −0.116 −0.287 0.193 −0.009 1
    Cl −0.051 −0.049 0.169 −0.212 0.106 0.440** 0.485** 0.087 0.198 0.605** −0.122 −0.098 −0.098 1
    SO4 2− −0.157 0.244 0.044 −0.236 0.104 0.376* 0.288 −0.041 −0.024 0.897** −0.153 −0.182 −0.157 0.796** 1
    注: “**”表示在 0.01水平(双侧)上显著相关,“*”表示在 0.05水平(双侧)上显著相关。
    下载: 导出CSV

    表 6  地下水中“三氮”及重金属含量实测值与模拟预测值的拟合结果

    Table 6.  Fitting results of measured value and simulated predicted value of three nitrogen and heavy metal contents in the groundwater.

    分析项目R2截距斜率P/O
    Mn 0.672 10.139 0.369 0.894
    Cd 0.901 10.667 0.548 0.779
    Pb 0.605 5.161 0.237 0.802
    Co 0.870 −10.208 0.856 0.804
    Ni 0.557 75.286 0.786 0.781
    As 0.733 45.310 0.812 0.870
    NO3 −N 0.749 −1.193 0.752 0.775
    NH4 +−N 0.797 0.186 0.756 0.896
    NO2 −N 0.750 0.114 0.756 0.887
    Cl 0.773 −10.369 0.835 0.791
    SO4 2− 0.531 −9.631 0.921 0.809
    下载: 导出CSV
  • [1]

    杜新强,方敏,冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学, 2018, 39(11): 5266−5275.

    Du X Q,Fang M,Ye X Y. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science, 2018, 39(11): 5266−5275.

    [2]

    张涵,李奇翎,郭珊珊,等. 成都平原典型区地下水污染时空异质性及污染源分析[J]. 环境科学学报, 2019, 39(10): 3516−3527.

    Zhang H,Li Q L,Guo S S,et al. Spatial temporal heterogeneity and pollution sources of groundwater pollution in typical area of Chengdu Plain[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3516−3527.

    [3]

    李谨丞,曹文庚,潘登,等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132.

    Li J C,Cao W G,Pan D,et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132.

    [4]

    付坤. 超深层地下水中“三氮”的迁移转化规律研究[D]. 焦作: 河南理工大学, 2018: 49−50.

    Fu K. Study on the migration and trans formation of NH4 +, NO2 , and NO3 in super deep groundwater[D]. Jiaozuo: Henan Polytechnic University, 2018: 49−50.

    [5]

    张晓沛. 再生水回灌区地下水水化学特征及三氮迁移模拟[D]. 北京: 中国地质大学(北京), 2017: 58−59.

    Zhang X P. The water chemical characteristics of groundwater and the simulation of nitrogen migration in the irrigation area of reclaimed water[D]. Beijing: China University of Geosciences (Beijing), 2017: 58−59.

    [6]

    傅雪梅. 基于水化学和同位素的地下水硝酸盐源解析研究[D]. 上海: 上海大学, 2019.

    Fu X M. Groundwater nitrate source identification based on hydrochemical and isotopes[D]. Shanghai: Shanghai University, 2019.

    [7]

    常文博,李凤,张媛媛,等. 元素分析-同位素比值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究[J]. 岩矿测试, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    Chang W B,Li F,Zhang Y Y,et al. Inter-laboratory comparison of measuring organic carbon and stable nitrogen isotopes in marine sediments by elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    [8]

    张涵,杜昕宇,高菲,等. 联合PMF模型与稳定同位素的地下水污染溯源[J]. 环境科学, 2022, 43(8): 4054−4063.

    Zhang H,Du X Y,Gao F,et al. Groundwater pollution source identification by combination of PMF model and stable isotope technology[J]. Environmental Science, 2022, 43(8): 4054−4063.

    [9]

    刘楠涛,吴飞,袁巍,等. 长江与黄河源丰水期地表水中汞的分布特征、赋存形态及来源解析[J]. 环境科学, 2022, 43(11): 5064−5072. doi: 10.13227/j.hjkx.202201143

    Liu N T,Wu F,Yuan W,et al. Mercury speciation,distribution,and potential sources in surface waters of the Yangtze and Yellow River source basins of Tibetan Plateau during wet season[J]. Environmental Science, 2022, 43(11): 5064−5072. doi: 10.13227/j.hjkx.202201143

    [10]

    陈盟,潘泳兴,黄奕翔,等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学, 2022, 43(10): 4545−4555. doi: 10.13227/j.hjkx.202201127

    Chen M,Pan Y X,Huang Y X,et al. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area,Yangshuo[J]. Environmental Science, 2022, 43(10): 4545−4555. doi: 10.13227/j.hjkx.202201127

    [11]

    许燕颖,刘友存,张军,等. 赣江上游典型流域水体三氮及重金属空间分布特征与风险评价[J]. 地球与环境, 2020, 48(5): 574−583. doi: 10.14050/j.cnki.1672-9250.2020.48.070

    Xu Y Y,Liu Y C,Zhang J,et al. Spatial distribution and risk assessment of nitrogen and heavy metals in typical watershed of the upper reaches of Ganjiang River[J]. Earth and Environment, 2020, 48(5): 574−583. doi: 10.14050/j.cnki.1672-9250.2020.48.070

    [12]

    吴昊,朱红霞,袁懋,等. 气相分子吸收光谱法测定土壤中铵态氮和硝态氮的含量[J]. 岩矿测试, 2021, 40(1): 165−171.

    Wu H,Zhu H X,Yuan M,et al. Determination of ammonium nitrogen and nitrate nitrogen in soil by gas phase molecular absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165−171.

    [13]

    蓝天杉. 北京通州区浅层地下水中“三氮”迁移转化与弱透水层阻滞作用研究[D]. 长春: 吉林大学, 2019.

    Lan T S. The transportation and transformation of “Three Nitrogen” in shallow groundwater and the retarding effect of aquitard in Tongzhou, Beijing[D]. Changchun: Jilin University, 2019.

    [14]

    田辉. 基于SWAT与Visual Modflow的海伦市水资源模拟与合理配置研究[D]. 长春: 吉林大学, 2020.

    Tian H. Research on water resources simulation and reasonable allocation of Hailun City based on SWAT and Visual Modflow[D]. Changchun: Jilin University, 2020.

    [15]

    曹文庚,杨会峰,南天,等. 南水北调中线受水区保定平原地下水质量演变预测研究[J]. 水利学报, 2020, 51(8): 924−935.

    Cao W G,Yang H F,Nan T,et al. Prediction of groundwater quality evolution in the Baoding Plain of the SNWDP benefited regions[J]. Journal of Hydraulic of Engineering, 2020, 51(8): 924−935.

    [16]

    雷正国,陶月赞. 地下水水源地水质评价方法探讨[J]. 节水灌溉, 2019(8): 80−83.

    Lei Z G,Tao Y Z. Discussion on water quality assessment method for groundwater source[J]. Water Saving Irrigation, 2019(8): 80−83.

    [17]

    吴娟娟,卞建民,万罕立,等. 松嫩平原地下水氮污染健康风险评估[J]. 中国环境科学, 2019, 39(8): 3493−3500.

    Wu J J,Bian J M,Wan H L,et al. Health risk assessment of groundwater nitrogen pollution in Songlnen Plain[J]. China Environmental Science, 2019, 39(8): 3493−3500.

    [18]

    李天宇,董宏志,孔庆轩,等. 松嫩平原哈尔滨地区地下水环境背景值分析[J]. 水文, 2016, 36(3): 24−28,74.

    Li T Y,Dong H Z,Kong Q X,et al. Background values of groundwater environment in Harbin area of Songnen Plain[J]. Journal of China Hydrology, 2016, 36(3): 24−28,74.

    [19]

    李圣品,李文鹏,殷秀兰,等. 全国地下水质分布及变化特征[J]. 水文地质工程地质, 2019, 46(6): 1−8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    Li S P,Li W P,Yin X L,et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1−8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    [20]

    孙小淇. 武进区地表水水质分布特征及其氮污染来源解析研究[D]. 上海: 华东理工大学, 2020: 19-24.

    Sun X Q. Investigations on distribution of water quality and sources tracing of nitrogen pollution in Wujin District surface water[D]. Shanghai: East China University of Science and Technology, 2020: 19-24.

    [21]

    庞园,李志威,张明珠. 广花盆地地下水三氮时空分布特征及影响因素分析[J]. 生态环境学报, 2018, 27(5): 916−925. doi: 10.16258/j.cnki.1674-5906.2018.05.017

    Pang Y,Li Z W,Zhang M Z. Analysis of spatial-temporal distribution and influencing factors of three-nitrogen in groundwater of Guanghua Basin[J]. Ecology and Environmental Sciences, 2018, 27(5): 916−925. doi: 10.16258/j.cnki.1674-5906.2018.05.017

    [22]

    左朝晖. 北京东北部平原区地下水氮素污染源解析及其贡献率研究[D]. 石家庄: 河北地质大学, 2020.

    Zuo Z H. Source analysis and contribution rate of groundwater nitrogen pollution in the plain area of Northeast Beijing[D]. Shijiazhuang: Hebei GEO University, 2020.

    [23]

    张鑫. 地表水、地下水硝酸盐时空变化及其来源分析[D]. 西安: 西北大学, 2021.

    Zhang X. Spatiotemporal variation and source analysis of nitrate in surface water and groundwater: Guanzhong section of Wei River Basin[D]. Xi’an: Northwest University, 2021.

    [24]

    吕晓立,刘景涛,朱亮,等. 兰州市地下水中“三氮”污染特征及成因[J]. 干旱区资源与环境, 2019, 33(1): 95−100. doi: 10.13448/j.cnki.jalre.2019.015

    Lyu X L,Liu J T,Zhu L,et al. Distribution and source of nitrogen pollution in groundwater of Lanzhou City[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 95−100. doi: 10.13448/j.cnki.jalre.2019.015

    [25]

    李桂芳,杨恒,叶远行,等. 高原湖泊周边浅层地下水:氮素时空分布及驱动因素[J]. 环境科学, 2022, 43(6): 3027−3036. doi: 10.13227/j.hjkx.202109195

    Li G F,Yang H,Ye Y X,et al. Shallow groundwater around plateau lakes:Spatiotemporal distribution of nitrogen and its driving factors[J]. Environmental Science, 2022, 43(6): 3027−3036. doi: 10.13227/j.hjkx.202109195

    [26]

    Viktor Y, Еlena V, Valentin R. Influence of ammonium nitrogen on the treatment efficiency of underground water at iron removal stations[J]. Groundwater for Sustainable Development, 2023(22): 100943.

    [27]

    Ashu R, Kiran P, Ramet M, et al. Hydrochemical characteristics and potential health risks of nitrate, fluoride, and uranium in Kota district, Rajasthan, India[J]. Environmental Science and Pollution Research, 2023: 1−21.

    [28]

    何宝南,何江涛,孙继朝,等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51−63. doi: 10.13745/j.esf.sf.2022.1.29

    He B N,He J T,Sun J Z,et al. Comprehensive evaluation of regional groundwater pollution:Research status and suggestions[J]. Earth Science Frontiers, 2022, 29(3): 51−63. doi: 10.13745/j.esf.sf.2022.1.29

    [29]

    韩彬,林法祥,丁宇,等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429−437. doi: 10.15898/j.cnki.11-2131/td.201806190073

    Han B,Lin F X,Ding Y,et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429−437. doi: 10.15898/j.cnki.11-2131/td.201806190073

    [30]

    罗飞,巴俊杰,苏春田,等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195−203. doi: 10.15898/j.cnki.11-2131/td.201806040069

    Luo F,Ba J J,Su C T,at al. Contaminant assessment and sources analysis of heavy metals in soils from the upper reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195−203. doi: 10.15898/j.cnki.11-2131/td.201806040069

    [31]

    郭涛,陈海洋,滕彦国,等. 东北典型农产区流域地下水水质评价与污染源识别[J]. 北京师范大学学报(自然科学版), 2017, 53(3): 316−322.

    Guo T,Chen H Y,Teng Y G,et al. Pollution assessment and source identification of basin groundwater in typical agricultural areas in Northeast China[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(3): 316−322.

    [32]

    洪慧,李娟,汪洋,等. 基于统计学方法的地下水水质评价与成因分析——以齐齐哈尔市为例[J]. 环境工程技术学报, 2019, 9(4): 431−439. doi: 10.12153/j.issn.1674-991X.2019.04.160

    Hong H,Li J,Wang Y,et al. Groundwater quality evaluation and causes analysis based on statistical methods:Taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 431−439. doi: 10.12153/j.issn.1674-991X.2019.04.160

    [33]

    马小雪,龚畅,郭加汛,等. 长江下游快速城市化地区水污染特征及源解析:以秦淮河流域为例[J]. 环境科学, 2021, 42(7): 3291−3303. doi: 10.13227/j.hjkx.202011184

    Ma X X,Gong C,Guo J X,et al. Water pollution characteristics and source apportionment in rapid urbanization region of the lower Yangtze River:Considering the Qinghai River catchment[J]. Environmental Science, 2021, 42(7): 3291−3303. doi: 10.13227/j.hjkx.202011184

    [34]

    Guo W J, Zhang Z Y, Wang H, et al. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area[J]. Journal of Environmental Management, 2021: 112493.

    [35]

    Zhu Y, Yang J, Wang L, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020: 140232.

    [36]

    Wang Y Z, Duan X J, Wang L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province[J]. Science of the Total Environment, 2020: 134953.

  • 加载中

(2)

(6)

计量
  • 文章访问数:  1171
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2022-08-27
修回日期:  2022-10-09
录用日期:  2023-05-29
刊出日期:  2023-08-31

目录