Content and Occurrence State of Niobium and Rare Earth Elements in Hornblendite of Dagele, East Kunlun by the Electron Probe Technique
-
摘要:
电子探针显微分析仪非常适合寻找铌、稀土等关键金属元素的赋存矿物以及分析其在矿物中的赋存形式。东昆仑大格勒地区首次发现了以铌为主的稀有和稀土矿化碳酸岩——碱性岩杂岩体,现有的工作仅局限于地表岩石组合及矿产特征调查。角闪石岩作为杂岩体的主体岩性,有不同程度的铌、稀土矿化显示,但是角闪石岩中铌、稀土元素赋存状态尚不明确。本文在光学显微镜岩相学研究的基础上,利用电子探针技术,对角闪石岩进行分析,主要对铌矿物和稀土矿物的类型、嵌布关系及化学成分等进行研究。应用偏光显微镜分析结果表明角闪石岩主要由角闪石、辉石、金云母/黑云母、磷灰石等矿物组成,并含有少量易解石。电子探针研究表明:①角闪石岩中铌元素主要赋存于铌易解石和含铌钛铁矿中,稀土元素主要赋存于褐帘石和铌易解石中,且均是富集轻稀土元素;②铌易解石中Nb2O5含量达42.98%~51.96%,La2O3平均含量为4.63%,Ce2O3平均含量为12.16%,矿物颗粒直径15~90μm不等,包含于角闪石晶体或角闪石与金云母晶间,局部与角闪石相互交生,与褐帘石、磷灰石连生;③含铌钛铁矿中Nb2O5平均含量为2.01%;④褐帘石中Ce2O3平均含量为10.73%,La2O3平均含量为9.89%,矿物颗粒直径10~40μm不等,主要分布于磷灰石边缘港湾、裂隙中,与磷灰石连生,并有相互交生的特点;⑤铌易解石、褐帘石等矿石矿物均赋存于含磷灰石金云母角闪石岩中。上述研究结合全岩化学分析,本文认为岩石中的铌矿物和稀土矿物主要由后期热液交代作用形成,空间上越靠近全岩矿化碳酸岩、橄榄岩的角闪石岩受后期热液交代作用更强,含矿性更好。
Abstract:BACKGROUND The demand for rare metals and rare earth elements has been steadily rising as they play an important role in the high-tech industry. In response, there is an urgent need to study the exploration, development, and utilization of them. The formation of deposits containing rare metals and rare earth elements is intricately linked with igneous rocks, and it has been found that numerous large-scale rare metal and rare earth mines, both domestically and internationally, are associated with alkaline rock complex and carbonatite. In Dagele, East Kunlun, a groundbreaking discovery of the first occurrence of rare and rare-earth mineralized carbonatite-alkaline rock complex predominantly containing niobium was made. This finding represents a significant advancement in the understanding of mineralization in East Kunlun. Currently, the existing research has been primarily focused on surface rock assemblages and mineral characterization investigations. Hornblendite, being the predominant lithology in this complex, exhibits varying degrees of niobium and rare earth mineralization. However, the occurrence state of niobium and rare earth elements in hornblendite remains unclear. Studying the occurrence characteristics of niobium and rare earth elements is crucial for identifying the types of minerals present in the ores, summarizing distribution in their patterns, and exploring the enrichment mechanisms. Comprehensive knowledge of the mineralization laws within the alkaline complex and breakthroughs in mineral exploration should subsequently follow. Due to the small particles and complex dissemination characteristics of niobium minerals and rare earth minerals, precise identification and mineralogical and occurrence analysis under polarized light microscope pose significant challenges[18-19]. Fortunately, electron probe microanalyzers are well-suited for identifying minerals containing key metallic elements like niobium and rare earth minerals. They also enable analysis of the mineral forms in which these elements are present. Recent reports have highlighted their successful applications in related studies.
OBJECTIVES In order to find out the existing forms of niobium and rare earth elements in hornblende rocks and the host minerals of niobium and rare earth elements.
METHODS In this study, the hornblendite was analyzed by electron probe on the basis of petrographic observations under a microscope. The primary focus is on investigating the characteristics of niobium minerals and rare earth minerals, such as their species, dissemination relationships, and chemical composition. Additionally, the aim is to accurately analyze the occurrence state of niobium and rare earth elements. The polished thin section of the electron probe was polished and prepared at the Shougang Geological Exploration Laboratory, and subsequently examined and identified using a polarized light microscope (Leica DM4500p) at the Rock and Mineral Identification Center of the Qinghai Geological and Mineral Research Institute. A JEOL JXA-iHP200F electron probe was adopted, and its analysis and test were conducted at the Electron Probe Laboratory of the Institute of Mineral Resources, the Chinese Academy of Geological Sciences. To facilitate the analysis, a conductive carbon film was sprayed onto the surface of the electron probe sheet in a high vacuum environment. Subsequently, JED-2300 X-ray energy spectrum analysis and quantitative electron probe spectrum analysis were performed using an electron probe analyzer. For the quantitative analysis of oxides, the acceleration voltage was 15kV, acceleration current 20nA, and beam spot diameter 3μm. For the quantitative analysis of rare metals and rare earth minerals, the acceleration voltage was 15kV, acceleration current 20nA, and beam spot diameter less than 3μm. During the analysis, the elemental peak measurements were conducted for a duration of 10s, followed by 5s of pre-background measurement and 5s of post-background measurement time. To ensure accurate results, all the collected data were processed using the ZAF matrix correction method. The detection limits for different elements range from 50×10−6 to 300×10−6.
RESULTS (1) The analysis results with the polarized light microscope suggest that hornblendite primarily consists of hornblende, pyroxene, phlogopite/biotite, apatite, and other minerals, with a minor presence of aeschynite. The electron probe study indicates that ① In hornblendite, niobium elements are primarily present in niobium aeschynite and niobium-bearing ilmenite, while rare earth elements are predominantly found in allanite and niobium aeschynite. Notably, these elements exhibit significant enrichment in light rare earth elements; ② Niobium aeschynite typically contains an average of 42.98% to 51.96% Nb2O5, 4.63% La2O3, and 12.16% Ce2O3. The mineral grains range in diameter from 15 to 90μm and are located within hornblende crystals or between hornblende and phlogopite crystals. In certain areas, they exhibit intergrowth with hornblende and are closely associated with allanite and apatite; ③ The average content of Nb2O5 in niobium-bearing ilmenite is 2.01%; ④ allanite inclusions exhibit an average Ce2O3 content of 10.73% and an average La2O3 content of 9.89%. These mineral particles have diameters ranging from 10 to 40μm and are primarily found in apatite marginal pores and fissures. They demonstrate a close association with apatite, displaying characteristic mutual intergrowth. (2) The analysis of chemical samples of rocks shows that the highest grade of Nb2O5 reaches 0.1% in hornblendite in the middle of complex (close to carbonatite and peridotite), and about 0.02% in hornblende at the edge of the complex. The analyzed sample (21DGb11) of apatite-bearing phlogopite hornblendite is situated in the central region of the complex. This specific sample exhibits a closer spatial relationship with the overall mineralization of carbonatite, peridotite, and pyroxene within the area. Notably, valuable ore minerals such as niobium aeschynite, allanite, and niobium-bearing ilmenite have been identified within this sample. (3) The presence of niobium minerals and rare earth minerals in hornblendite in Dagele is likely attributed to late-stage hydrothermal processes. Furthermore, the hornblendite that is in closer proximity to the whole-rock mineralized carbonatite and peridotite exhibits a higher degree of influence from late-stage hydrothermal processes, resulting in more significant mineralization.
CONCLUSIONS The formation of niobium minerals and rare earth minerals in rocks is primarily attributed to late-stage hydrothermal processes. Moreover, the hornblendite that is in closer proximity to the whole-rock mineralized carbonatite and peridotite exhibits a higher susceptibility to late-stage hydrothermal processes, resulting in enhanced mineralization. In the East Kunlun orogenic belt, rare and rare-earth mineralized alkaline complex predominantly enriched with niobium elements has been discovered for the first time. These findings highlight the exceptional concentration of niobium in this region. The Late Silurian—Devonian period is believed to be a highly significant timeframe for rare metal mineralization, particularly dominated by niobium elements, in the East Kunlun region.
-
Key words:
- East Kunlun /
- hornblendite /
- niobium aeschynite /
- allanite /
- EPMA
-
图 1 东昆仑造山带地质简图(据王秉璋等[33]修改)
Figure 1.
表 1 大格勒地区角闪石岩中铌易解石和含铌钛铁矿电子探针波谱定量分析结果
Table 1. EPMA analyzed data of niobium aeschynite and niobium-bearing ilmenite in hornblendite from Dagele area.
元素 铌易解石(%) 含铌钛铁矿(%) 测点11-1 测点11-2 测点11-3 测点11-4 测点11-5 测点11-6 测点11-7 测点11-8 测点11-9 测点11-10 测点11-11 测点11-12 F 0.20 0.15 - 0.17 0.09 0.21 0.27 0.21 - - 0.63 - SiO2 1.19 0.23 0.06 0.11 0.11 0.03 0.08 0.07 0.06 0.07 0.05 0.06 Al2O3 0.32 0.12 - 0.02 - - 0.01 0.03 - 0.01 0.02 0.02 ZnO - - - - - - 0.12 0.14 0.02 - 0.05 0.06 CaO 5.13 7.00 7.67 7.13 7.13 7.03 7.29 7.09 0.35 0.00 - - Nb2O5 42.98 48.13 51.96 51.06 50.54 50.92 51.70 48.68 1.77 2.16 2.10 2.04 La2O3 4.84 4.23 3.77 5.06 5.00 5.27 4.70 4.21 - - - - Y2O3 0.11 0.26 0.29 0.26 0.25 0.01 0.11 0.19 0.03 0.07 - 0.05 ThO2 0.58 0.23 0.22 0.00 0.07 0.27 0.26 0.21 0.02 - - 0.01 UO2 0.09 - 0.15 0.01 0.04 0.14 - - 0.02 0.06 - - Sc2O3 0.01 0.00 0.00 - - - 0.01 - 0.01 - - - TiO2 15.47 12.67 12.71 13.59 13.68 13.02 12.63 14.09 50.56 48.24 49.43 48.69 Ta2O5 0.41 0.88 0.40 0.63 0.79 0.47 0.79 1.35 0.16 0.22 0.07 - SrO 1.30 3.34 0.76 3.36 3.78 3.27 3.35 3.22 4.45 0.29 - - Ce2O3 13.84 12.89 11.21 11.98 12.30 12.31 10.93 11.83 - 0.03 - - FeO 1.18 0.86 0.32 0.77 0.72 0.29 0.56 0.44 34.65 42.71 42.78 41.78 Tb2O3 - 0.19 0.06 - - - 0.18 - 0.12 0.32 0.59 - Yb2O3 0.07 - 0.03 - - - - - - - - - Ho2O3 - 0.14 0.12 - 0.17 0.09 0.21 0.32 - - - - MgO 0.18 - 0.02 0.00 0.08 0.03 - - 0.05 0.15 0.06 0.10 Tm2O3 0.10 - 0.04 - 0.02 - - - - - 0.04 0.18 Cl 0.03 0.04 0.03 0.03 0.02 0.02 0.03 0.03 - 0.01 0.01 0.01 P2O5 0.04 - 0.04 0.01 0.02 0.05 0.02 0.01 - 0.01 0.00 0.00 Pr2O3 1.85 1.31 1.36 1.27 1.37 0.91 1.34 1.54 - - 0.01 0.11 Nd2O3 5.89 4.94 4.95 4.70 4.61 4.26 4.83 5.48 - - - - Sm2O3 0.49 0.35 0.59 0.50 0.39 0.39 0.39 0.60 - - 0.04 - Eu2O3 - - - - - - - - 0.09 0.12 0.05 0.09 Dy2O3 0.08 0.05 0.08 0.05 0.09 - 0.11 0.18 4.18 1.18 1.12 1.11 Er2O3 0.12 - - - - - 0.05 - 0.30 0.26 0.28 0.26 Total 96.49 98.00 96.81 100.71 101.28 98.98 99.97 99.92 96.84 95.91 97.31 94.55 注:“-”表示未检出。 表 2 大格勒地区角闪石岩中褐帘石电子探针波谱定量分析结果
Table 2. EPMA analyzed data of allanite in hornblendite from Dagele area.
元素 褐帘石11-13
(%)褐帘石11-14
(%)褐帘石11-15
(%)褐帘石11-16
(%)褐帘石11-17
(%)褐帘石11-18
(%)褐帘石11-19
(%)褐帘石11-20
(%)F 0.04 - - - - - - - SiO2 32.55 31.84 31.89 31.67 30.71 31.76 31.17 31.52 Al2O3 14.53 13.91 13.84 13.62 13.84 14.27 13.32 14.92 ZnO - - 0.12 0.02 0.05 - - - CaO 9.95 10.09 10.01 9.76 11.50 9.97 9.87 10.07 Nb2O5 0.03 - - 0.01 0.05 - - - La2O3 8.99 10.54 10.30 11.29 9.34 10.66 11.24 6.77 Y2O3 - 0.08 0.01 - 0.01 0.01 0.02 0.00 ThO2 0.06 0.16 0.16 0.12 0.08 0.02 0.05 0.10 UO2 0.04 0.07 - 0.03 0.02 0.05 - - Sc2O3 - 0.01 - 0.01 - - 0.00 - TiO2 1.74 1.54 1.53 1.83 1.67 1.55 2.05 1.21 Ta2O5 - - - - - - - - SrO 0.36 2.87 3.95 1.41 2.19 3.52 3.76 3.42 Ce2O3 11.68 10.86 10.68 10.25 9.99 10.70 10.31 11.37 FeO 11.17 11.74 10.88 11.69 10.99 10.95 11.86 12.28 Tb2O3 - - 0.37 0.45 - - - 0.15 Yb2O3 - - - - - 0.06 - - Ho2O3 - - - 0.01 - 0.02 - - MgO 2.65 2.25 2.30 2.42 2.14 2.39 2.27 1.05 Tm2O3 0.94 0.80 0.64 0.75 0.79 0.84 0.69 0.72 Cl 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.02 P2O5 0.02 0.08 0.06 - 1.28 - 0.04 0.05 Pr2O3 0.84 0.78 0.79 0.68 0.80 0.77 0.58 0.96 Nd2O3 1.92 1.50 1.52 1.34 1.76 1.50 1.29 2.89 Sm2O3 0.10 0.06 0.02 - 0.05 - - 0.04 Eu2O3 - - - - - - - - Dy2O3 0.00 0.07 0.11 0.03 0.04 - 0.01 0.11 Er2O3 0.17 0.10 0.08 - 0.03 - 0.12 0.14 Total 97.76 99.35 99.28 97.39 97.31 99.03 98.66 97.78 注:“-”表示未检出。 -
[1] 何海洋,何敏,李建武. 我国铌矿资源供需形势分析[J]. 中国矿业, 2018, 27(11): 1−5.
He H Y,He M,Li J W. Analysis of the niobium resources supply and demand pattern in China[J]. China Mining Magazine, 2018, 27(11): 1−5.
[2] 邓攀,陈玉明,叶锦华,等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4): 63−68.
Deng P,Chen Y M,Ye J H,et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4): 63−68.
[3] 郑国栋,王琨,陈其慎,等. 世界稀土产业格局变化与中国稀土产业面临的问题[J]. 地球学报, 2021, 42(2): 265−272.
Zheng G D,Wang K,Chen Q S,et al. The change of world rare earth industrial structure and the problems faced by China's rare earth industry[J]. Acta Geoscientica Sinica, 2021, 42(2): 265−272.
[4] 黎洁,谢贤,吕晋芳,等. 铌矿资源概述及选矿技术研究进展[J]. 金属矿山, 2021(2): 120−126.
Li J,Xie X,Lyu J F,et al. Overview of niobium resources and research progress in mineral processing technology[J]. Metal Mine, 2021(2): 120−126.
[5] 陶克捷,张培善. 变生易解石的特性[J]. 岩石矿物学杂志, 1994, 13(1): 67−77.
Tao K J,Zhang P S. Characteristics of metamict aeschynites[J]. Acta Petrologica et Mineralogica, 1994, 13(1): 67−77.
[6] 陈浦浦,尹京武,聂潇,等. 陕西省平利县朱家院碱性岩中易解石矿物学研究[J]. 电子显微学报, 2014, 33(1): 46−54.
Chen P P,Yin J W,Nie X,et al. Study on the mineralogy of aeschynite from alkaline trachyte in Zhujiayuan of Pingli County,Shaanxi Province[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(1): 46−54.
[7] 王濮, 潘兆橹, 翁玲宝. 系统矿物学[M]. 北京: 地质出版社, 1987: 528-534(上册), 260-264(中册).
Wang P, Pan Z L, Weng L B, et al. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1987: 528-534(Volume 1), 260-264(Volume 2).
[8] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金, 2019, 35(2): 106−111.
Zhai M G,Wu F Y,Hu R Z,et al. Critical metal mineral resources:Current research status and scientific issues[J]. China Science Foundation, 2019, 35(2): 106−111.
[9] 刘健,凌明星,李印,等. 白云鄂博超大型REE-Nb-Fe矿床的稀土成矿模式综述[J]. 大地构造与成矿学, 2009, 33(2): 270−282.
Liu J,Ling M X,Li Y,et al. REE ore forming models of Giant Bayan Obo REE-Nb-Fe ore deposit:A review[J]. Geotectonica et Metallogenia, 2009, 33(2): 270−282.
[10] 谢玉玲,曲云伟,杨占峰,等. 白云鄂博铁、铌、稀土矿床:研究进展、存在问题和新认识[J]. 矿床地质, 2019, 38(5): 983−1003.
Xie Y L,Qu Y W,Yang Z F,et al. Giant Bayan Obo Fe-Nb-REE deposit:Progresses,controversaries and new understandings[J]. Mineral Deposits, 2019, 38(5): 983−1003.
[11] 晁会霞,苏生瑞,杨兴科,等. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 2016, 23(4): 102−108.
Chao H X,Su S R,Yang X K,et al. Research on the geological characteristics of the Miaoya REE deposit,Hubei Province[J]. Earth Science Frontiers, 2016, 23(4): 102−108.
[12] 王珂, 王连训, 朱煜翔, 等. 湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制: 矿物化学制约[J]. 地球科学, 2022, https://kns.cnki.net/kcms/detail/42.1874.P.20220928.0911.002.html.
Wang K, Wang L X, Zhu Y X, et al. Occurrences and enrichment mechanism of niobium in Miaoya carbonatite complex, Hubei Province, China: Constrains from mineral chemistry[J]. Earth Science, 2022, https://kns.cnki.net/kcms/detail/42.1874.P.20220928.0911.002.html.
[13] 尹淑苹,谢玉玲,梁亚运. 碳酸岩岩浆演化过程中REE富集与分异的研究进展及碳酸岩中的矿物学分带[J]. 矿床地质, 2021, 40(5): 949−962.
Yin S P,Xie Y L,Liang Y Y,et al. A review of REE enrichment and fractionation mechanism during magma evolution of ore-forming carbonatite and significance of mineral zonation in carbonatite[J]. Mineral Deposits, 2021, 40(5): 949−962.
[14] 余元军,万建领,闫佐,等. 新疆阿图什苏洪东碱性花岗岩型铌钽富矿脉的发现及意义[J]. 地质学刊, 2021, 45(3): 225−229. doi: 10.3969/j.issn.1674-3636.2021.03.001
Yu Y J,Wang J L,Yan Z,et al. Discovery and significance of the suhongdong alkaline granite-type Nb-Ta-enriched vein in Artux,Xinjiang[J]. Journal of Geology, 2021, 45(3): 225−229. doi: 10.3969/j.issn.1674-3636.2021.03.001
[15] 郑硌,顾雪祥,章永梅,等. 安哥拉Huila省Bonga碳酸岩型铌矿床烧绿石地球化学组成、演化及其与岩浆-热液作用过程的关系[J]. 地学前缘, 2014, 21(5): 69−89.
Zheng L,Gu X X,Zhang Y M,et al. Geochemical compositions and evolution of pyrochlore and their relationships with magmatic-hydrothermal processes in the Bonga carbonatite-type Nb deposit,Huila Province,Angola[J]. Earth Science Frontiers, 2014, 21(5): 69−89.
[16] 李五福, 王涛, 王秉璋, 等. 东昆仑大格勒地区稀有和稀土矿化碱性杂岩体的发现及意义[J]. 大地构造与成矿学, 2022, https://kns.cnki.net/kcms/detail/44.1595.P.20220128.1313.002.html.
Li W F, Wang T, Wang B Z, et al. Discovery and significance of rare and REE mineralized alkaline complex in Dagele Area of East Kunlun[J]. Geotectonica et Metallogenia, 2022, https://kns.cnki.net/kcms /detail/44.1595.P.20220128.1313.002.html.
[17] 王秉璋, 李五福, 金婷婷, 等. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U-Pb年代学研究和找矿意义[J]. 地球科学, 2022, https://kns.cnki.net/kcms/detail/42.1874.P.20220809.0955.003.html.
Wang B Z, Li W F, Jin T T, et al. Baddeleyite U-Pb geochronology of rare metal mineralized carbonatite and peridotite in the Dagele area of East Kunlun orogen and its prospecting significance[J]. Earth Science, 2022, https://kns.cnki.net/kcms/detail/42.1874.P.20220809.0955.003.html.
[18] 张迪,陈意,毛骞,等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21
Zhang D,Chen Y,Mao Q,et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21
[19] 李超,王登红,屈文俊,等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.
Li C,Wang D H,Qu W J,et al. A review perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.
[20] 王芳,朱丹,鲁力,等. 应用电子探针分析技术研究某铌—稀土矿中的稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670−679.
Wang F,Zhu D,Lu L,et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670−679.
[21] 杨波,杨莉,孟文祥. 电子探针技术探究钪在白云鄂博矿床不同矿物中的赋存特征[J]. 岩矿测试, 2022, 41(1): 185−198.
Yang B,Yang L,Meng W X. Application of electron probe microanalyzer in exploring the occurrence characteristics of scandium in different minerals of the Bayan Obo deposit[J]. Rock and Mineral Analysis, 2022, 41(1): 185−198.
[22] 杨世平,杨细华,李安邦,等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541−553.
Yang S P,Yang X H,Li A B,et al. Study on geochemical characteristics and REE mineralization of S-enriched monazite in the Dabie orogenic belt by electron probe microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541−553.
[23] 张龙,陈振宇,汪方跃,等. 电子探针技术研究奥北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174−184.
Zhang L,Chen Z Y,Wang F Y,et al. Application of electron probe microanalyzer to study the textures and compositions of alteration coronas of monazite from the Longhuashan granite,Northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174−184.
[24] 许志琴,杨经绥,李文昌,等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6): 1847−1860.
Xu Z Q,Yang J S,Li W C,et al. Paleo-Tethys system and accretionary orogen in the Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 1847−1860.
[25] Hao L L,Wang Q,Wyman D A,et al. First identification of postcollisional A-type magmatism in the Himalayan—Tibetan orogeny[J]. Geology, 2019, 47(2): 187−190. doi: 10.1130/G45526.1
[26] 马昌前,熊富浩,尹烁,等. 造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555−3568.
Ma C Q,Xiong F H,Yin S,et al. Intensity and cyclicity of orogenic magmatism:An example from a Paleo-Tethyan granitoid batholith,Eastern Kunlun,Northern Qinghai—Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555−3568.
[27] 王秉璋,罗照华,潘彤,等. 青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA-ICP-MS锆石U-Pb年龄[J]. 地质通报, 2012, 31(6): 860−874. doi: 10.3969/j.issn.1671-2552.2012.06.005
Wang B Z,Luo Z H,Pang T,et al. Petrotectonic assemblages and LA-ICP-MS zircon U-Pb age of early Paleozoic volcanic rocks in Qimantag area,Tibetan Plateau[J]. Geological Bulletin of China, 2012, 31(6): 860−874. doi: 10.3969/j.issn.1671-2552.2012.06.005
[28] 王秉璋,张金明,李五福,等. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示[J]. 岩石学报, 2023, 39(3): 763−784. doi: 10.18654/1000-0569/2023.03.09
Wang B Z,Zhang J M,Li W F,et al. Discovery of two stages of the early Paleozoic Adakitic intrusive rocks in the Kunlun River area,East Kunlun:Implications for collisional orogenic processes[J]. Acta Petrologica Sinica, 2023, 39(3): 763−784. doi: 10.18654/1000-0569/2023.03.09
[29] Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 1996, 258(1‒4): 215‒231.
[30] Li R B,Pei X Z,Li Z C,et al. Geochemical features,age,and tectonic significance of the Kekekete Mafic-ultramafic rocks,East Kunlun orogen,China[J]. Acta Geologica Sinica (English Edition), 2013, 87(5): 1319−1333. doi: 10.1111/1755-6724.12131
[31] Song S G,Bi H Z,Qi S S,et al. HP-UHP metamorphic belt in the East Kunlun orogen:Final closure of the proto-Tethys ocean and formation of the Pan-North-China Continent[J]. Journal of Petrology, 2018, 59(11): 2043−2060. doi: 10.1093/petrology/egy089
[32] 潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(1): 16−33. doi: 10.3969/j.issn.1672-6561.2017.01.002
Pang T. Classification of metallogenic units in Qinghai,China[J]. Journal of Earth Sciences and Environment, 2017, 39(1): 16−33. doi: 10.3969/j.issn.1672-6561.2017.01.002
[33] 王秉璋,潘彤,任海东,等. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘, 2021, 28(1): 318−333.
Wang B Z,Pang T,Ren H D,et al. Cambrian Qimantagh Island arc in the East Kunlun orogen:Evidences from zircon U-Pb ages. Lithogeochemistry and Hf isotopes of high-Mo andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 2021, 28(1): 318−333.
[34] 姚立,田地,梁细荣. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49−54. doi: 10.3969/j.issn.0254-5357.2008.01.013
Yao L,Tian D,Liang X R. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49−54. doi: 10.3969/j.issn.0254-5357.2008.01.013
[35] 张培善,陶克捷. 中国褐钇柯矿族和易解石矿族矿物的特征[J]. 中国稀土学报, 1987, 5(1): 1−7.
Zhang P S,Tao K J. Characteristics of the fergusonite group and aeschynite group minerals in China[J]. Journal of the Chinese Society of Rare Earths, 1987, 5(1): 1−7.
[36] 张静. 易解石族矿物的化学特征[J]. 中国稀土学报, 1988, 6(2): 63−67.
Zhang J. Chemical characteristics of aeschynite group minerals[J]. Journal of the Chinese Society of Rare Earths, 1988, 6(2): 63−67.
[37] 陈菲,苏文,张铭,等. 褐帘石的谱学特征[J]. 岩石学报, 2019, 35(1): 233−242. doi: 10.18654/1000-0569/2019.01.18
Chen F,Su W,Zhang M,et al. Spectroscopic characteristics of the allanite[J]. Acta Petrologica Sinica, 2019, 35(1): 233−242. doi: 10.18654/1000-0569/2019.01.18
[38] 郭海浩,肖益林,谷湘平,等. 广东新丰稀土花岗岩中褐帘石LA-ICP-MS的U-Th-Pb定年研究[J]. 地质学报, 2014, 88(6): 1025−1037.
Guo H H,Xiao Y L,Gu X P,et al. LA-ICP-MS allanite U-Th-Pb geochronology study on Guangdong Xinfeng REE-rich granite[J]. Mineral Resources and Geology, 2014, 88(6): 1025−1037.
[39] 李世金,孙丰月,高永旺,等. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 2012, 45(4): 185−191.
Li S J,Sun F Y,Gao Y W,et al. The theoretical guidance and the practice of small intrusions forming large deposits—The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu,Eastern Kunlun,Qinghai[J]. Northwestern Geology, 2012, 45(4): 185−191.
[40] 张照伟,王亚磊,邵继,等. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征[J]. 矿床地质, 2021, 40(6): 1230−1247.
Zhang Z W,Wang Y L,Shao J,et al. Metallogenic characteristics of Xiarihamu super-large magmatic nickel-cobalt sulfide deposit in Eastern Kunlun orogenic belt[J]. Mineral Deposits, 2021, 40(6): 1230−1247.
[41] 张照伟,王亚磊,钱兵,等. 东昆仑冰沟南铜镍矿锆石SHRIMP U-Pb年龄及构造意义[J]. 地质学报, 2017, 91(4): 724−735.
Zhang Z W,Wang Y L,Qian B,et al. Zircon SHRIMP U-Pb age of the Binggounan magmatic Ni-Cu deposit in East Kunlun mountains and its tectonic implications[J]. Acta Geologica Sinica, 2017, 91(4): 724−735.
[42] 周伟,汪帮耀,夏明哲,等. 东昆仑石头坑德镁铁-超镁铁质岩体矿物学特征及成矿潜力分析[J]. 岩石矿物学杂志, 2016, 35(1): 81−96.
Zhou W,Wang B Y,Xia M Z,et al. Mineralogical characteristics of shitoukengde mafic-ultramafic intrusion and analysis of its metallogenic potential,East Kunlun[J]. Acta Petrologoca et Mineralogica, 2016, 35(1): 81−96.