Occurrence State of Lithium of a Greisen-Type Lithium Deposit in the Porphyry Sn-Ore Field, Southern Jiangxi Province
-
摘要:
云英岩型锂矿作为近年来新的锂矿类型,具有重要的理论研究和经济价值。然而,在中国南岭及其周缘世界级的钨锡成矿省中,伴生云英岩型锂矿化的综合评价却稍显不足。本课题组在赣南岩背斑岩锡矿田新发现了云英岩型的锂矿,矿体产于密坑山岩体与上覆鸡笼嶂组火山岩的接触带附近的云英岩带内,发育三种矿化类型:云英岩带型和花岗岩、火山岩内的含锂云母-石英脉型。矿体中Li2O的含量最高可达1.04%,主要集中于0.2%~0.3%,具有显著的综合利用价值。为了确定云英岩型锂矿中Li的赋存状态及Li、Sn之间的关系等特征,本文开展了详细的镜下观察,扫描电镜、电子探针和LA-ICP-MS分析,确定了岩背矿田不同于国内外其他典型云英岩型锂矿床大量发育锂云母-铁锂云母系列,其Li载体矿物主要为黑鳞云母,具有高Si、Al、K、Fe、Li的特征,且未经历极端的流体分异演化过程。Li的成矿主要与矿区含斑细粒花岗岩有关,在岩浆晚期高温热液阶段与Sn共同富集,并以Si4++Li+↔AlⅣ+FeT耦合类质同象形式进入云母。
Abstract:Greisen-type Li ore, a new type of lithium ore in recent years, is of great theoretical research and economic value. However, there is slightly insufficient in comprehensive evaluation of greisen-type Li ore in such a world-class Nanling W-Sn metallogenic province and its surroundings. In this work, we found greisen-type Li mineralization firstly in the Yanbei Sn-ore field, Huichang district, Jiangxi Province. The lithium mineralization occurred at the greisen belt near the contact zone between the Minkengshan granitic batholith and overlying volcanic rock of the Jilongzhang Formation. Three types of mineralization were identified: the greisen type, the quartz vein type in granite, and the quartz vein type in volcanic rock. The content of Li2O reaches 1.04% and mainly ranges from 0.2%−0.3%, which is of significant comprehensive utilization value. The occurrence state of lithium and the metallogenic characteristics based on the detailed microscopic observation, scanning electron microscope (SEM) images, electron probe microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is determined here. There is a potential difference between the Yanbei ore field and other domestic and international typical greisen-type lithium deposits, which develop lepidolite-ferrolepidolite series. The main Li-bearing mineral is protolithionite in the Yanbei ore field, and it is identified as high Si, Al, K, Fe and Li with no significant extreme fluid differentiation process. The Li, co-accumulated with Sn in the post-magmatic high-temperature gas-liquid stage, can be linked to the porphyritic fine-grained granite and enter mica via coupling substitution of Si4++Li+↔AlⅣ+FeT.
-
-
图 1 (a) 江西省钨锡多金属矿集区分布图(据王登红等[24]);(b) 岩背矿田淘锡坝矿区地质图(据赣南队报告)
Figure 1.
表 1 云母中微量元素测定LA-ICP-MS仪器设定参数
Table 1. Measurement conditions for LA-ICP-MS analysis of trace elements in mica
激光参数 实验条件 ICP-MS参数 实验条件 激光源 ASI J-200飞秒激光 ICP-MS系统 X-Series电感耦合等离子体质谱仪 波长 343nm 功率 1400W 脉冲宽度 20ns 冷却气(Ar)流速 13.5L/min 激光束 均值化平顶光束 辅助气(He)流速 0.85L/min 脉冲能量 0.01~0.1mJ/pulse 传输气(He)流速 0.25L/min 能量密度 8J/cm2 传输气(Ar)流速 0.9L/min 焦点 表面 扫描模式 峰跳跃模式 光栅扫描速度 6Hz 获取模式 时间分辨分析 束斑直径 25μm 持续分析时间 70s 表 2 岩背矿田淘锡坝锡矿云母化学成分
Table 2. The chemical compositions of mica from Taoxiba deposit in Yanbei ore field
组分 Mica-1(云英岩中云母)中各成分测定值(n=8,%) Mica-2(石英-云母脉中云母)中各成分测定值(n=47,%) 极小值 上四分位 中位值 下四分位 极大值 平均值 极小值 上四分位 中位值 下四分位 极大值 平均值 SiO2 37.19 37.75 38.38 39.19 41.84 38.62 39.03 39.47 39.99 40.49 42.09 40.20 TiO2 0.00 0.13 0.26 0.44 0.63 0.28 0.00 0.05 0.13 0.17 0.34 0.13 Al2O3 18.02 18.46 18.86 19.80 20.94 19.10 19.53 20.06 20.29 20.60 20.89 20.31 FeO 19.74 22.83 25.38 25.74 28.34 24.35 18.08 21.34 21.60 22.86 23.64 21.77 MnO 0.49 0.53 0.57 0.59 0.63 0.56 0.44 0.51 0.55 0.59 0.79 0.56 MgO 0.21 0.37 0.48 0.53 0.61 0.44 0.03 0.08 0.09 0.09 0.14 0.09 CaO 0.00 0.00 0.00 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.06 0.08 0.15 0.17 0.48 0.15 0.16 0.20 0.22 0.25 0.31 0.22 K2O 9.65 9.80 9.88 9.91 10.31 9.89 9.54 9.80 9.86 9.92 10.15 9.86 Rb2O 0.01 0.16 0.18 0.20 0.28 0.17 0.09 0.18 0.22 0.24 0.34 0.21 F 1.28 1.80 2.23 2.88 3.09 2.30 1.93 2.72 2.94 3.30 3.69 2.99 Cl 0.02 0.08 0.11 0.13 0.32 0.11 0.11 0.15 0.15 0.19 0.22 0.16 Li2O* 1.12 1.28 1.46 1.70 2.46 1.53 1.65 1.78 1.93 2.07 2.53 1.99 Li2O# 0.87 1.08 1.31 1.59 1.80 1.32 1.07 1.49 1.66 1.85 2.08 1.63 H2O* 2.39 2.53 2.79 2.98 3.17 2.76 2.21 2.36 2.48 2.64 2.99 2.52 以22个O原子为基准计算(%) Si 5.82 5.90 5.95 6.02 6.13 5.96 5.97 6.02 6.06 6.09 6.23 6.06 AlIV 1.87 1.98 2.05 2.10 2.18 2.04 1.77 1.92 1.94 1.99 2.03 1.94 AlⅥ 1.23 1.29 1.37 1.57 1.74 1.43 1.56 1.62 1.67 1.70 1.87 1.67 Ti 0.00 0.02 0.03 0.05 0.07 0.03 0.00 0.01 0.02 0.02 0.04 0.01 Fe 2.42 2.93 3.30 3.39 3.67 3.15 2.24 2.66 2.72 2.92 3.03 2.75 Mn 0.07 0.07 0.07 0.08 0.08 0.07 0.06 0.07 0.07 0.08 0.10 0.07 Mg 0.05 0.08 0.11 0.12 0.14 0.10 0.01 0.02 0.02 0.02 0.03 0.02 Li* 0.71 0.81 0.91 1.04 1.45 0.95 1.02 1.08 1.17 1.25 1.50 1.20 Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.02 0.02 0.04 0.05 0.15 0.05 0.05 0.06 0.06 0.07 0.09 0.06 K 1.90 1.92 1.94 1.98 2.01 1.95 1.80 1.89 1.91 1.92 1.94 1.90 Rb 0.00 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.02 0.03 0.02 OH* 2.49 2.59 2.87 3.08 3.33 2.85 2.21 2.39 2.54 2.67 3.03 2.53 F 0.64 0.88 1.09 1.39 1.49 1.12 0.93 1.29 1.42 1.58 1.75 1.42 Cl 0.00 0.02 0.03 0.03 0.09 0.03 0.03 0.04 0.04 0.05 0.05 0.04 总量 19.67 19.73 19.75 19.77 19.86 19.75 19.67 19.70 19.71 19.73 19.75 19.71 Y位置总量 5.63 5.71 5.74 5.76 5.86 5.74 5.67 5.69 5.72 5.74 5.88 5.73 X位置总量 1.96 1.98 2.00 2.03 2.12 2.01 1.86 1.96 1.99 2.01 2.03 1.98 注:Li2O*和H2O*测定值是通过电子探针分析结果计算得到,其中Li2O*测定值计算方法见Tischendorf等[35];OH*和Li*测定值是电子探针分析结果以22个O原子为基准计算得到;Li2O#测定值来自LA-ICP-MS分析结果换算。
-
[1] 吕子虎, 卫敏, 吴东印, 等. 提高铁锂云母精矿产品质量的试验研究[J]. 中国矿业, 2012, 21(4): 98−111. doi: 10.3969/j.issn.1004-4051.2012.04.024
Lyu Z H, Wei M, Wu D Y, et al. Experimental study on improving the quality of Zinnwaldite[J]. China Mining Magazine, 2012, 21(4): 98−111. doi: 10.3969/j.issn.1004-4051.2012.04.024
[2] Shi R Z, Zhao J X, Evans N J, et al. Temporal-spatial variations in Li-Fe mica compositions from the Weilasituo Sn-polymetallic deposit (NE China): Implications for deposit-scale fluid evolution[J]. Ore Geology Reviews, 2021, 134: 104132.
[3] Gao X, Zhou Z H, Karel Breiter K, et al. Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating[J]. Ore Geology Reviews, 2019, 109: 163−183. doi: 10.1016/j.oregeorev.2019.04.007
[4] Breiter K, Hložková M, Korbelová Z, et al. Diversity of lithium mica compositions in mineralized granite-greisen system: Cínovec Li-Sn-W deposit, Erzgebirge[J]. Ore Geology Reviews, 2019, 106: 12−27. doi: 10.1016/j.oregeorev.2019.01.013
[5] 陈毓川, 裴荣富, 张宏良, 等. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M]. 北京: 地质出版社, 1989.
Chen Y C, Pei R F, Zhang H L, et al. The geology of nonferrous and rare metal deposits related to mesozoic granitoids in the Nanling region, China[M]. Beijing: Geological Publishing House, 1989.
[6] 徐志刚, 陈毓川, 王登红. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008.
Xu Z G, Chen Y C, Wang D H. The division scheme of metallogenic belts in China[M]. Beijing: Geological Publishing House, 2008.
[7] Wang D H, Huang F, Wang Y, et al. Regional metallogeny of tungsten-tin-polymetallic deposits in Nanling region, South China[J]. Ore Geology Reviews, 2019, 120: 103305.
[8] 李胜虎. 华南典型花岗岩型稀有金属矿床的成矿机制与找矿模式研究[D]. 北京: 中国地质大学(北京), 2015.
Li S H. Ore-forming mechanisms and prospecting models of typical granite type rare metal deposits in South China[D]. Beijing: China University of Geosciences (Beijing), 2015.
[9] Li J, Huang X L, He P L, et al. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolution of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793−810. doi: 10.1016/j.oregeorev.2014.09.028
[10] 王成辉, 王登红, 陈晨, 等. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J]. 地质学报, 2019, 93(6): 1359−1373. doi: 10.3969/j.issn.0001-5717.2019.06.015
Wang C H, Wang D H, Chen C, et al. Progress of research on the Shiziling rare metals mineralization from Jiuling-type rock and its significance for prospecting[J]. Acta Geologica Sinica, 2019, 93(6): 1359−1373. doi: 10.3969/j.issn.0001-5717.2019.06.015
[11] Zhu Z, Wang R, Marignac C, et al. A new style of rare metal granite with Nb-rich mica: The early Cretaceous Huangshan rare-metal granite suite, Northeast Jiangxi Province, Southeast China[J]. American Mineralogist, 2018, 103(10): 1530−1544. doi: 10.2138/am-2018-6511
[12] Wang D H, Dai H Z, Liu S B, et al. Research and exploration progress on lithium deposits in China[J]. China Geology, 2020, 3(1): 137−152.
[13] 王水龙, 王大钊, 刘爽, 等. 江西甘坊岩体发现罕见的含铍矿物——红磷锰铍石[J]. 岩矿测试, 2022, 41(4): 688−690. doi: 10.15898/j.cnki.11-2131/td.202204190083
Wang S L, Wang D Z, Liu S, et al. Discovery of rare beryllium mineral, Väyrynenite in Ganfan granite body, Jiangxi Province[J]. Rock and Mineral Analysis, 2022, 41(4): 688−690. doi: 10.15898/j.cnki.11-2131/td.202204190083
[14] 郭春丽, 张斌武, 郑义, 等. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制[J]. 岩石学报, 2024, 40(2): 347−403. doi: 10.18654/1000-0569/2024.02.02
Guo C L, Zhang B W, Zheng Y, et al. Granitic lithium deposits in China: Important characteristics, meltallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2): 347−403. doi: 10.18654/1000-0569/2024.02.02
[15] 王正军, 谢磊, 王汝成, 等. 一种特殊类型的云英岩: 湘南香花岭地区癞子岭云英岩成岩成矿特征[J]. 高校地质学报, 2018, 24(4): 467−480.
Wang Z J, Xie L, Wang R C, et al. The petrogenesis and mineralization of the Laiziling Greisen, Xianghualing district, Hunan Province, South China[J]. Geological Journal of China Universities, 2018, 24(4): 467−480.
[16] Legros H, Marignac C, Mercadier J, et al. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China)[J]. Lithos, 2016, 264(1): 108−124.
[17] Legros H, Marignac C, Mercadier J, et al. The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry[J]. American Mineralogist, 2018, 103(1): 39−54. doi: 10.2138/am-2018-6196
[18] Stemprok M. Drill hole CS-1 penetrating the Cinovec/Zinnwald granite cupola (Czech Republic): An A-type granite with important hydrothermal mineralization[J]. Journal of Geosciences, 2016, 61: 395−423.
[19] 陈毓川, 黄民智, 胡云中. 大厂锡矿地质[M]. 北京: 地质出版社, 1993.
Chen Y C, Huang M Z, Hu Y Z. Geology of Dachang tin mine[M]. Beijing: Geological Publishing House, 1993.
[20] 吴福元, 郭春丽, 胡方泱, 等. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 2023, 39(1): 1−36. doi: 10.18654/1000-0569/2023.01.01
Wu F Y, Guo C L, Hu F Y, et al. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China[J]. Acta Petrologica Sinica, 2023, 39(1): 1−36. doi: 10.18654/1000-0569/2023.01.01
[21] 张勇, 潘家永, 马东升. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示[J]. 地质学报, 2020, 94(11): 3321−3342. doi: 10.3969/j.issn.0001-5717.2020.11.010
Zhang Y, Pan J Y, Ma D S. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: Constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 2020, 94(11): 3321−3342. doi: 10.3969/j.issn.0001-5717.2020.11.010
[22] Müller A, Herklotz G, Giegling H. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Erzgebirge, Germany[J]. Journal of Geochemical Exploration, 2018, 190: 357−373.
[23] 王成辉, 王登红, 刘善宝, 等. 赣南石雷钨锡矿云英岩型锂矿找矿新发现及其区域成矿潜力分析[J]. 中国地质, 2022, 49(6): 1834−1844.
Wang C H, Wang D H, Liu S B, et al. New discovery and regional prospecting potentiality of greisen-type lithium mineralization in the Shilei tungsten and tin deposit, Southern Jiangxi Province[J]. Geology in China, 2022, 49(6): 1834−1844.
[24] 王登红, 陈富文, 张永忠, 等. 南岭有色-贵金属成矿潜力及综合探测技术研究[M]. 北京: 地质出版社, 2010: 1-472.
Wang D H, Chen F W, Zhang Y Z, et al. Study on metallogenic potential and comprehensive exploration technology of Nanling nonferrous and precious metals[M]. Beijing: Geological Publishing House, 2010: 1-472.
[25] 梅勇文. 上湾隐伏锡矿床的预测和发现[J]. 地质与勘探, 1992, 28(7): 1−7.
Mei Y W. The concealed Shangwan Sn-deposit: Its prediction and discovery[J]. Geology and Prospecting, 1992, 28(7): 1−7.
[26] 孙社良, 朱昌杰, 李永明, 等. 江西会昌曲水坑锡矿床地质特征及找矿前景分析[J]. 华东地质, 2016, 37(4): 291−299.
Sun S L, Zhu C J, Li Y M, et al. Geological characteristics of the Qushuikeng Sn ore deposit in Huichang, Jiangxi Province and analysis for the prospect potential[J]. East China Geology, 2016, 37(4): 291−299.
[27] 李雪琴, 赵运平, 吴正昌, 等. 江西会昌锡坑迳锡矿田成矿规律研究[J]. 资源调查与环境, 2013, 34(2): 109−111.
Li X Q, Zhao Y P, Wu Z C, et al. Study on metallogenic regularity of Xikengjing tin ore field in Huichang County, Jiangxi Province, China[J]. Resources Survey & Environment, 2013, 34(2): 109−111.
[28] 曹圣华, 肖晓林, 刘春根. 华南武夷山地区中生代板内成矿与找矿远景分析[C]//第八届全国矿床会议, 2006.
Cao S H, Xiao X L, Liu C G. Analysis of Mesozoic intraplate metallogenesis and prospecting prospect in Wuyishan area, South China[C]//The Eighth National Conference on Mineral Deposits, 2006.
[29] 柳勇. 江西会昌淘锡坝锡矿床地质地球化学特征与矿床成因研究[D]. 北京: 中国地质大学(北京), 2011.
Liu Y. Geological and geochemical characteristics and genesis of Taoxiba tin deposit in Huichang, Jiangxi Province, China[D]. Beijing: China University of Geosciences (Beijing), 2011.
[30] 邱检生, McInnes B I A, 蒋少涌, 等. 江西会昌密坑山岩体的地球化学及其成因类型的新认识[J]. 地球化学, 2005, 34(1): 20−32. doi: 10.3321/j.issn:0379-1726.2005.01.003
Qiu J S, McInnes B I A, Jiang S Y, et al. Geochemistry of the Mikengshan pluton in Huichang County, Jiangxi Province and new recognition about its genetic type[J]. Geochimica, 2005, 34(1): 20−32. doi: 10.3321/j.issn:0379-1726.2005.01.003
[31] 彭琳琳. 江西会昌锡坑迳矿田锡矿成矿规律与找矿预测[D]. 南京: 南京大学, 2019.
Peng L L. Tin metallogenic regularity and exploration prospecting of the Xikengjing ore field in Huichang County, Jiangxi Province[D]. Nanjing: Nanjing University, 2019.
[32] 梁鹤. 华南白垩纪岩背斑岩锡矿成矿斑岩的成因及其成矿意义[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017.
Liang H. Cretaceous porphyries associated with the porphyry tin deposit in the Yanbei area, South China: Petrogenesis and implications for mineralization[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017.
[33] Li Q, Zhao K D, Lai P C, et al. Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China: Implication for multiple magma sources, tin mineralization, and geodynamic setting[J]. Lithos, 2018, 296−299: 163−180. doi: 10.1016/j.lithos.2017.11.006
[34] 李前. 中国赣南—粤东早白垩世锡成矿作用研究[D]. 北京: 中国地质大学(北京). 2022: 1−227.
Li Q. Early Cretaceous tin mineralization in Southern Jiangxi Province and Eastern Guangdong Province, China[D]. Beijing: China University of Geosciences (Beijing), 2022: 1−227.
[35] Tischendorf G, Gottesmann B, Foerster H J, et al. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineral Magazine, 1997, 61(6): 809−834.
[36] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1−2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004
[37] Guggenheim S, Bailey S W. The refinement of zinnwaldite-1M in subgroup symmetry[J]. American Mineralogist, 1977, 62: 1158−1167.
[38] Brigatti M F, Daniel E, Poppi K M. Crystal structure and crystal chemistry of lithium-bearing muscovite-2M1[J]. The Canadian Mineralogist, 2001, 39(4): 1171−1180. doi: 10.2113/gscanmin.39.4.1171
[39] 王汝成, 谢磊, 诸泽颖, 等. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2018, 35(1): 69−75.
Wang R C, Xie L, Zhu Z Y, et al. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica, 2018, 35(1): 69−75.
[40] 唐傲, 李光来, 周龙全, 等. 赣南茅坪钨矿伟晶岩壳中环带云母的特征及对岩浆-热液演化过程的指示意义[J]. 地质科技情报, 2016, 35(1): 30−37.
Tang A, Li G L, Zhou L Q, et al. Geological characteristics of micas with zonal structure inpegmatite from Maoping tungsten deposit and its significance to magma-fluid evolution process, Southern Jiangxi[J]. Geological Science and Technology Information, 2016, 35(1): 30−37.
[41] Rieder M, Hybler J, Smrčok L, et al. Refinement of the crystal structure of zinnwaldite 2M[J]. European Journal of Mineralogy, 1996, 8(6): 1241−1248.
[42] 张宇镭, 党琰, 贺平安. 利用Pearson相关系数定量分析生物亲缘关系[J]. 计算机工程与应用, 2005, 41(33): 79−83. doi: 10.3321/j.issn:1002-8331.2005.33.026
Zhang Y L, Dang Y, He P A. Quantitative analysis of the relationship of biology species using Pearson correlation coefficient[J]. Computer Engineering and Applications, 2005, 41(33): 79−83. doi: 10.3321/j.issn:1002-8331.2005.33.026
[43] Guo J, Zhang G Y, Xiang L, et al. Combined mica and apatite chemical compositions to trace magmatic-hydrothermal evolution of fertile granites in the Dachang Sn-polymetallic district, South China[J]. Ore Geology Reviews, 2022, 151: 105168. doi: 10.1016/j.oregeorev.2022.105168
[44] Stemprok M, Voldan J. Phase relations in the silica rich area of the system Li2O-SnO2-SiO2[J]. Ceramics Silikaty, 1987, 31: 1−16.
[45] 胡受奚, 叶瑛, 方长泉. 交代蚀变岩岩石学及其找矿意义[M]. 北京: 地质出版社, 2004: 1−105.
Hu S X, Ye Y, Fang C Q. Petrology of the metasomatically altered rocks and its significance in prospecting[M]. Beijing: Geological Publishing House, 2004: 1-105.
[46] 刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984: 1−518.
Liu Y J. Element geochemistry[M]. Beijing: Science Press, 1984: 1-518.
[47] 刘英俊. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 1−518.
Liu Y J. Introduction to element geochemistry[M]. Beijing: Geological Publishing House, 1987: 1−281.
[48] Stemprok R. Plasma density measurement using ion probes[C]//Joint Meeting of the 15th Symposium on Applications of Plasma, 2005.
-