Re-Os Isotope Dating of the Natural Micro/Nano Silicon-Carbon Deposit in Fengcheng City, Jiangxi Province
-
摘要:
江西省丰城石炉坑天然微纳米硅碳矿床为全球首例由植硅石成矿的沉积矿床,矿床的开发对信息技术、新能源、新材料、高端制造等战略性新兴产业具有关键作用,硅碳矿在分布范围、成因类型、资源类型等方面与石英、石墨不同,作为新矿种开展研究特别是年代学研究具有重要意义。在富有机质沉积岩定年研究中,Re-Os同位素定年作为一种强有力的测试手段,其应用多集中在海相沉积岩,而湖相沉积岩受物源、地质作用、陆源碎屑物质等多种因素影响则少见成功报道。为精确厘定石炉坑硅碳矿床的成矿时代,本文尝试利用Re-Os同位素测试对矿区石炉坑组下段7件植硅石岩进行定年研究,获得植硅石岩的Re-Os同位素年龄为43.1±3.7Ma(n=7,MSWD=6.2),直接指示了石炉坑植硅石岩成岩成矿时代为古近纪始新世。研究表明,植硅石岩中Re/Os高分异(均值525.1)与其沉积环境、生物沉积作用有关。187Os/188Os较高的初始值(1.713±0.0036)则受沉积环境、区域岩石及构造运动共同影响。本研究成果体现了Re-Os同位素体系对湖相沉积岩测年研究的适用性。
Abstract:BACKGROUND The micro/nano silicon-carbon deposit in Fengcheng City, Jiangxi Province, is the first sedimentary deposit mineralized by phytoliths in the world. According to the research carried out here, micro/nano silicon-carbon ore may have been formed by the long-term accumulation and consolidation of phytoliths. In terms of distribution range, genetic type and resource type, the micro/nano silicon-carbon deposit has many new features. Therefore, considering the particularity of the deposit, it is of great significance to carry out research, especially chronological research. Moreover, Re-Os isotope system of organic-enriched sedimentary rocks has been applied to directly dating deposition ages or stratigraphic boundary age, which has made many achievements in chronological research. However, most of the studies focus on marine sediments samples, while lacustrine sediments samples are rarely affected by many factors, such as provenance, geological processes, and terrigenous clastic materials.
OBJECTIVES To accurately determine the mineralization age of the natural micro/nano silicon-carbon deposit.
METHODS Re-Os isotope testing was used to date the phytolith rock samples (lacustrine sediment samples) in the lower section of the Shilukeng Formation in the mining area. Isotope ratios were determined by NTIMS, and GBW04477 (JCBY) was used as the reference material.
RESULTS The Re-Os isotope age of the samples is 43.1±3.7Ma (n=7, MSWD=6.2) which directly defines the diagenetic mineralization age of phytolith rock of the deposit. The high 187Re/188Os value of the samples is closely related to the sedimentary environment and the origin of biological sedimentation. The high initial 187Os/188Os ratio may be related to tectonic movement events, high Os content and migration rate of adjacent strata. The study shows that Re and Os isotopes are adsorbed and sealed in phytolith with organic carbon in the process of enrichment. Owing to the phytolith’s stable silica structure, high temperature resistance and corrosion resistance, the Re-Os isotope system has a good sealing property in it. Protected by the special structure, the organic carbon in phytolith mainly exists in the tiny cavity of phytolith, and the organic carbon has not been exchanged with the outside world due to its storage, which provides favorable conditions for dating. Moreover, the large amount of phytolith in the samples also provides favorable conditions for the enrichment of Re and Os isotopes.
CONCLUSIONS The results of this study provide for the determination of sedimentary age about lacustrine sediments samples by the Re-Os isotope analysis. It is important to strengthen research about the study of Re-Os enrichment mechanism by micro/nano silicon-carbon ore samples.
-
Key words:
- Shilukeng mining area /
- Re-Os isotope /
- metallogenic age /
- micro/nano silicon-carbon deposit /
- phytolith
-
-
图 1 江西石炉坑矿床(a)大地构造位置图(据胡正华等[20])和(b)矿区地质图
Figure 1.
表 1 江西丰城石炉坑植硅石岩Re-Os同位素数据
Table 1. Re-Os isotope data of phytolith rock from Shilukeng deposit in Fengcheng area, Jiangxi Province.
样品编号 取样
深度
(m)Re含量(ng/g) 普通Os含量(ng/g) 187Os含量(ng/g) 187Re/188Os 187Os/188Os 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK8-13-H6 15.41 108.6 0.8 1.227 0.012 0.3242 0.0029 406.5 4.4 1.991 0.004 ZK14-9-Y1 26.0 292.8 2.5 2.544 0.031 0.7056 0.0073 556.0 8.3 2.131 0.034 ZK14-9-Y2 26.2 270.4 2.0 1.996 0.016 0.5658 0.0043 654.4 6.8 2.177 0.005 ZK14-9-Y3 26.4 229.9 1.7 2.168 0.018 0.5894 0.0045 512.1 5.5 2.091 0.006 ZK14-9-Y4 26.6 226.7 2.1 1.844 0.020 0.5123 0.0044 593.8 8.4 2.135 0.029 ZK14-9-Y11 36.4 22.72 0.20 0.789 0.0068 0.1873 0.0018 139.1 1.7 1.824 0.023 ZK14-9-H16 41.5 299.2 2.2 1.727 0.015 0.5214 0.0043 813.8 8.8 2.301 0.004 表 2 富有机质地质样品及各种不同储库中的187Os/188Os初始值
Table 2. Data of initial 187Os/188Os of various organic-enriched geological samples and geochemical reservoirs.
-
[1] 顾延生, 李长安, 章泽军. 植硅石分析在第四纪环境研究中的应用[J]. 地质科技情报, 1997(4): 56−59.
Gu Y S, Li C A, Zhang Z J. Application of phytolith analysis in study of vermicular red earth in South China[J]. Geological Science and Technology Information, 1997(4): 56−59.
[2] 左昕昕, 吴乃琴. 植硅体14C测年研究: 过去、现在与未来[J]. 第四纪研究, 2019, 39(1): 59−66. doi: 10.11928/j.issn.1001-7410.2019.01.06
Zuo X X, Wu N Q. Phytolith radiocarbon dating: Past, present and future[J]. Quaternary Sciences, 2019, 39(1): 59−66. doi: 10.11928/j.issn.1001-7410.2019.01.06
[3] Ravizza G, Turekian K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989: 3257-3262.
[4] 韩志宇, 王非, 师文贝. 沉积岩定年及应用: 问题与展望[J]. 沉积学报, 2022, 40(2): 360−379.
Han Z Y, Wang F, Shi W B. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica Sinica, 2022, 40(2): 360−379.
[5] 李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421−430. doi: 10.3969/j.issn.1000-6524.2010.04.009
Li C, Qu W J, Wang D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421−430. doi: 10.3969/j.issn.1000-6524.2010.04.009
[6] 李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405−414. doi: 10.3975/cagsb.2014.04.02
Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J]. Acta Geoscientia Sinica, 2014, 35(4): 405−414. doi: 10.3975/cagsb.2014.04.02
[7] 赵鸿, 李超, 江小均, 等. Re-Os同位素精确厘定长兴“金钉子”灰岩沉积年龄[J]. 科学通报, 2015, 60(23): 2209−2215. doi: 10.1360/N972015-00409
Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of limestone from Changxing Permian—Triassic Boundary using the Re-Os geochronometer[J]. China Science Bulletin, 2015, 60(23): 2209−2215. doi: 10.1360/N972015-00409
[8] 储著银, 许继峰. 铼-锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245−264. doi: 10.11867/j.issn.1001-8166.2021.024
Chu Z Y, Xu J F. Re-Os and PG: Analytical methods and their applications in geosciences[J]. Advances in Earth Science, 2021, 36(3): 245−264. doi: 10.11867/j.issn.1001-8166.2021.024
[9] 李欣尉, 李超, 周利敏, 等. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试, 2023, 42(2): 1−18. doi: 10.15898/j.ykcs.202207200135
Li X W, Li C, Zhou L M, et al. Research progress on Re-Os isotopic system of carbon-enriched geological samples[J]. Rock and Mineral Analysis, 2023, 42(2): 1−18. doi: 10.15898/j.ykcs.202207200135
[10] 杨雪. 植硅体碳十四(14C)测年初探[D]. 北京: 中国地震局地质研究所, 2013.
Yang X. A preliminary study of radiocarbon dating (14C) on phytoliths[D]. Beijing: Institute of Geology, China Earthquake Administration, 2013.
[11] 王先广, 胡正华, 肖玉如, 等. 一种植硅石沉积天然微纳米硅碳矿的发现[J]. 地质论评, 2021, 67(6): 1829−1837.
Wang X G, Hu Z H, Xiao Y R, et al. Discovery of a natural micro nano silicon carbon deposit deposited by planting silica[J]. Geological Review, 2021, 67(6): 1829−1837.
[12] 王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 2022, 43(3): 267−278.
Wang C L, Wang J Y, You C, et al. A study on strategic non-metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica, 2022, 43(3): 267−278.
[13] Tang S, Shuai H, Zhao R, et al. Process mineralogy of micro/nano silicon-carbon ore obtained from Jiangxi, China[J]. Minerals (Basel), 2022, 12(6): 1−11.
[14] 邓荣敬, 徐备, 张立勤, 等. 萍乐坳陷西部上古生界—下三叠统烃源岩评价[J]. 天然气工业, 2005, 25(3): 23−28.
Deng R J, Xu B, Zhang L Q, et al. Assessment of the hydrocarbon source rocks in upper Paleozoic—Lower Triassic in West Pingle Depression[J]. Natural Gas Industry, 2005, 25(3): 23−28.
[15] 方朝刚, 滕龙, 郑红军, 等. 萍乐坳陷丰城地区茅口晚期“破裂台地”型沉积相与层序地层学特征[J]. 云南大学学报(自然科学版), 2018, 40(5): 935−946.
Fang C G, Teng L, Zheng H J, et al. On sedimentary facies and sequences stratigraphy characteristics of the upper Maokou Formation “Breaking Platform” type in the Fengcheng area, Pingle Depression[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(5): 935−946.
[16] 吴小力, 李荣西, 李尚儒, 等. 下扬子地区海陆过渡相页岩气成藏条件与主控因素: 以萍乐坳陷二叠系乐平组为例[J]. 地质科技情报, 2018, 37(1): 160−168.
Wu X L, Li R X, Li S R, et al. Accumulation conditions and main factors of marine-continental transitional shale gas in the lower Yangtze area of China: A case of Permian Leping Formation in the Pingle Depression[J]. Geological Science and Technology Information, 2018, 37(1): 160−168.
[17] 叶舟. 中、下扬子区盆地发育特征及其含油气性研究-以洞庭、鄱阳、弋阳及金衢盆地为例[D]. 成都: 西南石油大学, 2006.
Ye Z. Study on developing features and petroliferous characters of basins in middle and lower Yangtze area—Take example for Dongting, Poyang, Yiyang and Jinqu Basins[D]. Chengdu: Southwest Petroleum University, 2006.
[18] 周松源, 张介辉, 徐克定, 等. 从南昌凹陷构造演化分析赣江断裂带运动学特征[J]. 地质力学学报, 2005, 11(3): 266−272.
Zhou S Y, Zhang J H, Xu K D, et al. Analysis of kinematic features of the Ganjiang Fault Zone based on the tectonic evolution of the Nanchang Subbasin[J]. Journal of Geomechanics, 2005, 11(3): 266−272.
[19] 李会军, 张立勤, 梁锋, 等. 江西萍乐坳陷海相含油气系统特征[J]. 新疆石油地质, 2003, 24(3): 210−213. doi: 10.3969/j.issn.1001-3873.2003.03.009
Li H J, Zhang L Q, Liang F, et al. The marine petroleum system characteristics of Pingle Depression in Jiangxi Province[J]. Xinjiang Petroleum Geology, 2003, 24(3): 210−213. doi: 10.3969/j.issn.1001-3873.2003.03.009
[20] 胡正华, 王先广, 陈毓川, 等. 江南钨矿带(江西段)成矿规律[J]. 中国钨业, 2020, 35(5): 10−19.
Hu Z H, Wang X G, Chen Y C, et al. Metallogenic regularity in Jiangnan metallogenic of Tungsten Belt (Jiangxi section)[J]. China Tungsten Industry, 2020, 35(5): 10−19.
[21] Kendall B, Creaser R A, Selby D. 187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks[M]. London: Geological Society, 2009.
[22] 王礼兵, 屈文俊, 李超, 等. 负离子热表面电离质谱法测量铼的化学分离方法研究[J]. 岩矿测试, 2013, 32(3): 402−408.
Wang L B, Qu W J, Li C, et al. Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 402−408.
[23] Robert A C, Poulomi S, Thomas C, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441−3452. doi: 10.1016/S0016-7037(02)00939-0
[24] 陈郑辉, 李超, 屈文俊, 等. 石墨Re-Os同位素分析及其在成矿年代学中的初步运用[J]. 岩石学报, 2010, 26(11): 3411−3417.
Chen Z H, Li C, Qu W J, et al. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples[J]. Acta Petrologica Sinica, 2010, 26(11): 3411−3417.
[25] David S, Robert A C. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293−1295. doi: 10.1126/science.1111081
[26] Jiang S, Yang J, Ling H, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788−794. doi: 10.1080/10020070312331344440
[27] 裴浩翔, 付勇, 李超, 等. 贵州道坨锰矿成矿时代及环境的Re-Os同位素证据[J]. 科学通报, 2017, 62(28): 3346−3355.
Pei H X, Fu Y, Li C, et al. Mineralization age and metallogenic environment of Daotuo manganese deposits in Guizhou: Evidence from Re-Os isotopes[J]. Chinese Science Bulletin, 2017, 62(28): 3346−3355.
[28] 严清高, 李超, 江小均, 等. 滇中昆阳磷矿成矿时代及沉积环境Re-Os同位素示踪研究[J]. 岩矿测试, 2018, 37(4): 462−474. doi: 10.15898/j.cnki.11-2131/td.201805040054
Yan Q G, Li C, Jiang X J, et al. The age and sedimentary environment of the Kunyang phosphate deposit, Central Yunnan: Constraints from Re-Os isotopes[J]. Rock and Mineral Analysis, 2018, 37(4): 462−474. doi: 10.15898/j.cnki.11-2131/td.201805040054
[29] 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251−261. doi: 10.15898/j.cnki.11-2131/td.201907310116
Li X W, Li C, Zhou L M, et al. Accurate determination of the Carbonaceous mudstone of the Ordovician—Silurian Boundary in Zhengan Country, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251−261. doi: 10.15898/j.cnki.11-2131/td.201907310116
[30] 杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143−150. doi: 10.3321/j.issn:1005-2321.2005.02.016
Yang J H, Jiang S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143−150. doi: 10.3321/j.issn:1005-2321.2005.02.016
[31] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65Ma to present[J]. Science, 2001, 292(5517): 686−693. doi: 10.1126/science.1059412
[32] Steven M B, James C Z. Significant southern ocean warming event in the late Middle Eocene[J]. Geology, 2003, 31(11): 1017−1020. doi: 10.1130/G19800.1
[33] 王健, 彭捷, 操应长, 等. 东营凹陷中晚始新世古气候演化特征及其意义——以Hk1井为例[J]. 沉积学报, 2022, 40(4): 1059−1072. doi: 10.14027/j.issn.1000-0550.2021.010
Wang J, Peng J, Cao Y C, et al. Mid-late Eocene Paleoclimate characteristics and significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059−1072. doi: 10.14027/j.issn.1000-0550.2021.010
[34] 刘庆民, 何烈珍. 清江盆地岩盐矿床沉积特征与形成条件[J]. 井矿盐技术, 1982(1): 11−15.
Liu Q M, He L Z. Sedimentary characteristics and formation conditions of rock salt deposits in Qingjiang Basin[J]. Technology of the Well Salt Mine, 1982(1): 11−15.
[35] 何月明, 孙湘君. 江西清江盆地下第三系孢子花粉的初步研究Ⅰ[J]. 植物学报, 1977(1): 72−82.
He Y M, Sun X J. Palynological investigation of Palaeogen in the Qingjiang Basin in Jiangxi Province[J]. Journal of Integrative Plant Biology, 1977(1): 72−82.
[36] 王钦, 马丽, 周仕林. 江西古近纪岩相古地理及其矿产资源概况[J]. 四川地质学报, 2022, 42(1): 24−29.
Wang Q, Ma L, Zhou S L. Sedimentary facies and paleogeography and mineral resources of the paleogene in Jiangxi[J]. Acta Geologica Sichuan, 2022, 42(1): 24−29.
[37] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533−542. doi: 10.1016/j.jpgl.2007.08.021
[38] Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98−136. doi: 10.1016/j.earscirev.2014.03.008
[39] 梁兴, 叶舟, 吴根耀, 等. 鄱阳盆地构造-沉积特征及其演化史[J]. 地质科学, 2006(3): 404−429. doi: 10.3321/j.issn:0563-5020.2006.03.004
Liang X, Ye Z, Wu G Y, et al. Sedimenta-tectonic features and geological evolution of the Poyang Basin[J]. Chinese Journal of Geology, 2006(3): 404−429. doi: 10.3321/j.issn:0563-5020.2006.03.004
[40] Prasad V, Strömberg C A E, Alimohammadian H, et al. Dinosaur coprolites and the early evolution of grasses and grazers[J]. Science, 2005, 310(5751): 1177−1180. doi: 10.1126/science.1118806
[41] 吴乃琴. 江西清江盆地临江组非海相腹足类化石及时代讨论[J]. 古生物学报, 1989(6): 751−765. doi: 10.19800/j.cnki.aps.1989.06.008
Wu N Q. Nonmarine gastropod fossils from Linjiang Formation (Eocene) of Qingjiang Basin, Jiangxi, China[J]. Acta Palaeontologica Sinica, 1989(6): 751−765. doi: 10.19800/j.cnki.aps.1989.06.008
[42] Danish M, Tripathy G R, Mitra S, et al. Non-conservative removal of dissolved rhenium from a coastal lagoon: Clay adsorption versus biological uptake[J]. Chemical Geology, 2021, 580: 120378. doi: 10.1016/j.chemgeo.2021.120378
[43] Georgiev S, Stein H J, Hannah J L, et al. Chemical signals for oxidative weathering predict Re-Os isochroneity in black shales, East Greenland[J]. Chemical Geology, 2012, 324-325: 108−121. doi: 10.1016/j.chemgeo.2012.01.003
[44] Lúcio T, Souza N J A, Selby D. Late Barremian/early Aptian Re-Os age of the Ipubi Formation black shales: Stratigraphic and paleoenvironmental implications for Araripe Basin, Northeastern Brazil[J]. Journal of South American Earth Sciences, 2020, 102: 102699. doi: 10.1016/j.jsames.2020.102699
[45] Ravizza G, Esser B K. A possible link between the seawater osmium isotope record and weathering of ancient sedimentary organic matter[J]. Chemical Geology, 1993, 107(3-4): 255−258. doi: 10.1016/0009-2541(93)90186-M
[46] 赵鸿, 李超, 江小均, 等. 浙江长兴“金钉子”灰岩Re-Os富集机制研究[J]. 地质学报, 2015, 89(10): 1783−1791. doi: 10.3969/j.issn.0001-5717.2015.10.006
Zhao H, Li C, Jiang X J, et al. Enrichment mechanism of Re-Os in limestone from Changxing Permian—Trassic Boundary in Zhejiang[J]. Acta Geologica Sinica, 2015, 89(10): 1783−1791. doi: 10.3969/j.issn.0001-5717.2015.10.006
[47] Esser B K, Turekian K K. The osmium isotopic composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 3093−3104. doi: 10.1016/0016-7037(93)90296-9
[48] Sun W, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294−297. doi: 10.1038/nature01482
[49] Chen N, Zhong L, Jie D, et al. Characteristics of phytolith-occluded organic carbon sequestration in typical plant communities in the Songnen grassland, China[J]. Ecological Engineering, 2021, 173: 106442. doi: 10.1016/j.ecoleng.2021.106442
[50] 陈念康, 介冬梅, 高桂在, 等. 植硅体元素封存研究进展[J]. 微体古生物学报, 2022, 39(4): 348−360.
Chen N K, Jie D M, Gao G Z, et al. Advance in the study of phytolith-occluded element sequestration[J]. Acta Micropalaeontologica Sinica, 2022, 39(4): 348−360.
[51] Prychid C J, Rudall P J, Gregory M. Systematics and biology of silica bodies in monocotyledons[J]. The Botanical Review, 2003, 69(4): 377−440. doi: 10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2
[52] 刘桂建, 彭子成, 杨刚, 等. 煤中黄铁矿的铼-锇同位素含量及其地质意义[J]. 地学前缘, 2006, 13(1): 211−215. doi: 10.3321/j.issn:1005-2321.2006.01.028
Liu G J, Peng Z C, Yang G, et al. Abundance and geological significance of rhenium and osmium in pyrite samples from coals[J]. Earth Science Frontiers, 2006, 13(1): 211−215. doi: 10.3321/j.issn:1005-2321.2006.01.028
-