Geochemical Characteristics and Organic Matter Enrichment Mechanism in Late Paleozoic Mudstone, Eastern Margin of Ordos Basin
-
摘要:
鄂尔多斯盆地东缘煤层气、致密砂岩气资源丰富且含气层位较多,为探究煤系地层泥质烃源岩有机碳含量及其影响因素,指导该区煤系气资源高效开发,本文采集了石西地区石盒子组、山西组和太原组共计26块泥质岩样品,利用ICP-MS、SEM、XRF和同位素质谱仪开展有机碳含量、干酪根碳同位素、主微量元素和黏土矿物组成等分析测试工作。基于实验结果,对石炭—二叠系沉积环境(包括氧化还原条件、古气候及陆源碎屑)进行了分析,并进一步探究其对有机质富集的控制作用。结果表明,研究区山西组和太原组泥岩样品有机碳含量介于0.31%~5.97%(均值2.87%),而石盒子组为0.09%~2.75%(均值0.72%)。太原组至石盒子组样品Sr/Cu和Mg/Ca值偏低,Fe/Mn值较高,指示该沉积时期整体属于温暖潮湿气候,氧化还原敏感元素(RSEs)指标V/(V+Ni)和Ce/La均值分别为0.75、1.93,呈现缺氧环境特征。TOC值与Sr/Cu、Fe/Mn等气候指标相关性很弱,当TOC值小于1,与氧化还原敏感元素(RSEs)无明显相关性;当TOC值大于1,TOC和Al、RSEs元素之间分别存在显著正相关性。上述表明太原组和山西组有机质富集主要受水体氧化还原条件和陆源碎屑控制,石盒子组沉积时期受鄂尔多斯盆地东缘晚古生代海退趋势影响,由浅海陆棚相过渡为海陆过渡相,处于动水、高能环境,有机质不易富集保存。
Abstract:BACKGROUND In the past two decades, with the development of CBM technology, the reduction of recoverable resources in shallow coalbed methane and the consumption of unconventional natural gas in China increasing year by year, the development of deep coalbed methane is imperative. The coalbed methane resources in China are about 30.05×1012m3, and the coalbed methane resource within the burial depth range from 1000m to 2000m is about 18.87×1012m3, accounting for 62.8% of the total resources, which reflects that deep coalbed methane is an important resource foundation for the large-scale development of China’s coalbed methane industry. As the second largest petroliferous basin in China, the Ordos basin has great potential for exploration of deep coalbed methane. In the Eastern Ordos Basin, the coalbed methane resource less than 1500m in depth is about 9×1012m3. Although the eastern edge of the Ordos Basin is rich in deep coalbed methane and tight sandstone gas, the enrichment characteristics and controlling factors of organic matter in coal-bearing strata are unclear, which is not conducive to the study on the storage law of resource, evaluation of development potential, and selection of favorable areas.
OBJECTIVES To reveal the organic carbon content and its influencing factors of mudstones in the coal measure strata and guide the efficient development of coal-measure gas in the eastern margin of the Ordos Basin.
METHODS (1) Analytical method: A total of 26 mudstone samples from the Shihezi, Shanxi and Taiyuan Formations were collected in the Shixi area. The content of major and trace elements, organic carbon content and clay mineral characteristics were tested by XRF, ICP-MS and SEM. Carbon isotope of Kerogen was determined by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). The working standard of carbon isotope adopted the international standard PDB. (2) The mode of organic matter enrichment: Based on the experimental results, the Carboniferous—Permian sedimentary environment (including redox conditions, paleoclimate and terrigenous clastic characteristics) was studied with geochemical indicators, then correlation between sedimentary environment and organic matter content was further explored.
RESULTS (1) Organic and elemental geochemical characteristics of muddy source rocks. Compared with the data of major elements in the upper crust of the North China Plate, the Carboniferous—Permian mudstone samples in the study area show significant enrichment of Al2O3 and TiO2, and Al2O3/SiO2 value ranges from 0.11 to 0.58 (mean value is 0.37), indicating that the sample has a high content of clay minerals. The trace elements are significant enrichment of Li and Cs, slight depletion of Sr, and significant depletion of Zn and Ba. Rare earth elements are highly enriched overall (mean value is 475.4μg/g), and higher than UCC (174.074μg/g) and PAAS (211.78μg/g). The organic carbon content of mudstone samples from the Shanxi and Taiyuan Formations in study area is relatively high (mean value is 2.87%), while the Shihezi Formation is relatively low (mean value is 0.72%). (2) Redox-sensitive elements, mainly including Mo, V, U, Ni, Ce and La, are important indicators for characterizing the oxidation environment of sedimentary water bodies. V/(V+Ni) values range from 0.61 to 0.89 (mean value is 0.75), and the differentiation of each layer is not obvious (mean value of Shihezi Formation is 0.79, Shanxi Formation is 0.74, Taiyuan Formation is 0.78), and Ce/La values range from 1.55-2.3 (mean value is 1.93). The above indicators exhibit the characteristics of a poor oxygen environment. The corrected CIA index ranges from 85 to 100, reflecting the strong weathering of parent rock in the source area under a hot-humid environment. Besides, the Sr/Cu and Mg/Ca values of the sample range from 3.16 to 24.89 (mean value is 7.43) and 0.34 to 7.98 (mean value is 2.91), respectively. Fe/Mn values range from 21.35455 to 545.72 (mean value is 202.25), indicating a warm and humid climate during the late Paleozoic. The clay mineral content in the terrestrial debris of the sample is relatively high, which consists mainly of kaolinite (mean value is 39.27%) and illite (mean value is 28.54%). (3) The sedimentary period from the Taiyuan Formation to the Shihezi Formation belongs to a warm and humid climate as a whole, and the bottom of the sedimentary water body is in an anoxic environment. There was no significant correlation among climatic indices of Sr/Cu, Mg/Ca, Fe/Mn and TOC values, however, when the TOC value was more than 1, it was significantly positively correlated with Al and redox sensitive elements (RSEs).
CONCLUSIONS The enrichment of organic matter in the argillaceous rock of the Taiyuan Formation and Shanxi Formation is controlled mainly by water redox conditions and terrigenous debris. The Shihezi Formation inherites the regressive trend of the eastern margin of the Ordos Basin in the late Paleozoic, and its sedimentary environment changes from shallow shelf to marine-continental transitional facies, causing a dynamic ambient and high energy circumstance, in which organic matter is not easily enriched and preserved.
-
表 1 石西地区泥岩样品主量元素、有机碳含量及碳同位素值
Table 1. Concentrations of major elements, TOC value and δ13C (PDB) of mudstone samples in Shixi area.
样品编号 层位 岩性 SiO2
(%)Al2O3
(%)MgO
(%)CaO
(%)TFe2O3
(%)Na2O
(%)K2O
(%)MnO
(%)TiO2
(%)P2O5
(%)δ13C(PDB)
(‰)TOC
(%)SX-01-2 上石盒子组 深灰色泥岩 54.75 20.70 1.51 0.63 6.02 0.47 2.24 0.052 0.83 0.17 −23.7 2.75 SX-01-4 深灰色泥岩 57.09 23.22 1.35 0.27 4.10 0.52 2.77 0.021 0.75 0.06 −23.6 0.40 SX-01-5 灰黑色泥岩 58.26 22.40 1.08 0.27 3.38 0.50 2.98 0.024 0.67 0.06 −23.9 0.53 SX-01-10 下石盒子组 深灰色泥岩 79.36 8.77 0.36 0.44 0.51 0.11 0.56 0.026 1.53 0.09 −25.0 2.54 SX-01-11 深灰色粉砂质泥岩 62.12 18.83 1.38 1.06 1.92 0.42 3.80 0.011 0.86 0.24 −25.5 0.62 SX-02-2 灰绿色粉砂质泥岩 52.51 25.43 1.47 0.43 6.66 0.47 2.46 0.038 0.98 0.08 −24.0 0.14 SX-02-4 灰绿色泥岩 59.71 20.63 1.23 0.38 5.56 0.32 1.93 0.029 0.71 0.07 −24.1 0.16 SX-02-6 深灰色泥岩 58.01 23.08 0.86 0.33 2.76 0.38 4.12 0.009 0.76 0.05 −24.0 0.32 SX-05-1 深灰色泥岩 65.32 22.21 1.06 0.20 2.86 0.48 3.91 0.014 0.76 0.04 −24.0 0.51 SX-06-1 灰绿色泥岩 59.48 20.45 0.93 0.22 6.53 0.34 2.92 0.013 0.62 0.05 −23.7 0.09 SX-06-2 褐棕色泥岩 52.41 19.73 0.99 0.21 13.03 0.29 2.62 0.200 0.86 0.06 −23.9 0.46 SX-07-1 深灰色泥岩 48.86 27.80 1.23 0.30 4.72 0.43 5.37 0.026 1.20 0.10 −24.0 0.14 SX-02-8 山西组 黑色泥岩 58.52 22.60 0.82 0.16 2.08 0.31 1.69 0.013 0.76 0.04 −23.9 3.78 SX-03-1 灰色泥岩 65.00 18.66 1.20 0.29 4.27 0.21 3.29 0.021 0.94 0.05 −23.4 0.31 SX-03-4 灰色泥岩 62.62 22.44 0.54 0.18 1.77 0.20 2.48 0.013 1.02 0.05 −23.8 1.38 SX-04-2 深灰色泥岩 54.40 22.96 1.07 0.12 3.64 0.32 2.23 0.012 0.75 0.02 −24.1 4.04 SX-05-7 深灰色泥岩 63.62 23.68 1.04 0.38 3.22 0.33 2.57 0.106 0.78 0.05 −24.2 1.99 SX-06-4 灰黑色泥岩 58.83 23.59 1.05 0.11 1.31 0.29 2.49 0.004 0.83 0.05 −23.9 1.42 SX-07-2 灰黑色泥岩 61.01 17.82 1.42 0.37 5.08 0.55 2.79 0.063 0.70 0.09 −23.8 2.11 SX-07-3 灰黑色泥岩 54.11 19.72 1.17 0.47 6.70 0.76 3.00 0.092 0.71 0.12 −24.0 2.77 SX-07-5 黑色泥岩 49.01 28.56 0.42 0.19 1.32 0.58 0.79 0.005 0.89 0.06 −24.2 5.97 SX-02-11 太原组 黑色泥岩 65.74 18.44 0.71 0.42 1.60 0.19 1.57 0.028 0.88 0.09 −23.7 2.04 SX-04-4 灰黑色泥岩 55.94 24.27 0.32 0.80 1.56 0.31 1.28 0.019 0.79 0.10 −24.3 3.12 SX-03-6 黑色泥岩 53.97 25.76 0.25 0.23 0.77 0.14 1.07 0.004 0.76 0.04 −23.7 5.31 SX-06-6 深灰色泥岩 58.81 23.11 0.23 0.11 1.96 0.28 1.58 0.009 0.77 0.07 −23.7 2.58 SX-07-7 黑色泥岩 50.51 26.51 0.81 0.38 2.18 0.61 1.92 0.007 0.88 0.08 −23.9 3.63 注:样品编号中的命名含义,如SX-a-b中SX代表石西,“a”代表井号,“b” 代表该井样品序号。
表 2 石西地区晚古生代泥岩样品微量元素含量
Table 2. Trace element contents of late Paleozoic mudstone samples in Shixi area.
样品编号 微量元素含量(μg/g) Li Sc V Cr Co Ni Cu Zn Ga Rb Sr Mo Cs Ba Tl Th U Nb Ta Zr Hf SX-01-2 54.0 20.6 124 83.0 26.4 36.3 48.4 122 29.3 110 209 0.77 5.33 533 0.67 19.4 3.99 25.6 1.83 295 8.77 SX-01-4 40.2 16.8 78 50.0 20.3 30.4 36.5 127 29.8 129 255 0.45 6.43 779 0.81 17.4 3.34 24.8 1.78 287 9.02 SX-01-5 45.2 18.2 113 65.7 12.2 28.2 30.9 91.8 33.5 164 259 0.41 9.84 890 0.93 18.7 3.57 26.2 1.92 289 8.85 SX-01-10 51.2 8.68 96 50.1 6.03 11.7 11.2 52.2 16.6 22.6 48 2.76 2.32 201 0.28 15.3 2.70 21.5 1.63 546 14.9 SX-01-11 78.6 21.2 129 92.8 6.77 19.8 33.5 34.1 33.6 174 233 0.54 9.87 455 0.85 17.6 2.93 20.7 1.70 269 8.57 SX-02-2 43.3 21.2 88 90.6 17.2 17.2 32.8 84.9 35.0 110 165 0.51 7.54 650 0.77 17.6 3.89 27.9 1.93 544 15.87 SX-02-4 32.6 18.4 98 58.9 15.9 15.9 29.1 77.0 30.3 99.1 148 0.76 6.48 504 0.66 17.6 4.08 23.3 1.65 277 8.25 SX-02-6 27.6 22.5 112 85.4 8.16 8.16 47.2 59.4 32.0 190 216 0.43 11.8 754 1.14 19.5 3.64 23.6 1.80 233 7.23 SX-02-8 52.0 19.7 113 83.3 16.4 16.4 35.6 161 31.2 102 190 1.34 6.42 551 0.70 20.7 4.69 28.3 2.12 320 9.75 SX-02-11 53.1 15.5 91 74.4 15.7 15.7 27.7 64.6 23.8 73.7 186 0.88 5.69 230 0.54 12.8 2.91 18.0 1.34 264 7.91 SX-03-1 27.9 17.5 72 74.4 20.1 20.1 20.1 20.1 25.9 133 127 0.48 5.18 596 0.75 17.6 3.68 23.3 1.64 361 10.1 SX-03-4 47.4 20.7 64 79.3 10.2 10.2 10.2 10.2 32.1 126 117 0.61 7.28 534 0.70 21.0 4.04 28.5 2.11 345 9.84 SX-03-6 88.4 19.1 55 59.0 4.42 4.42 4.42 4.42 32.5 48.6 110 0.94 6.14 174 0.41 14.9 3.32 17.7 1.32 260 7.88 SX-04-2 105 21.2 125 87.3 19.2 42.3 30.5 147 31.0 125 169 1.14 8.21 607 0.88 20.7 4.51 25.8 2.01 250 8.16 SX-04-4 74.3 16.6 73 68.1 7.44 17.6 16.3 71.0 28.5 55.9 141 0.81 5.39 291 0.56 17.0 3.09 19.7 1.37 343 11.3 SX-05-1 30.8 19.8 93 69.0 10.7 24.6 59.9 66.2 27.6 191 189 0.55 10.6 756 1.11 17.2 3.55 19.4 1.42 206 6.58 SX-05-7 51.3 18.2 83 66.9 17.8 30.8 33.2 116 30.9 122 214 1.40 7.05 445 0.71 20.0 3.84 27.0 2.00 274 8.50 SX-06-1 30.2 13.5 61 49.8 11.2 22.0 25.1 77.3 24.4 137 124 0.34 9.84 581 0.80 14.1 2.30 19.7 1.41 238 7.29 SX-06-2 37.4 16.2 83 55.2 14.9 34.7 24.2 95.7 30.4 137 257 0.46 9.12 548 0.81 15.2 3.38 20.4 1.43 246 7.42 SX-06-4 68.0 15.5 85 58.5 6.87 18.9 29.0 47.2 29.3 127 114 1.03 12.6 469 0.73 19.1 3.85 27.3 2.06 322 9.67 SX-06-6 62.1 15.2 73 57.4 15.9 17.7 16.3 76.1 27.3 52.7 149 0.80 4.42 186 0.48 13.0 2.38 16.9 1.16 323 10.2 SX-07-1 24.2 25.5 118 95.3 16.2 29.8 42.1 82.8 34.9 185 252 0.31 5.81 963 1.04 23.0 4.12 32.0 2.35 390 11.9 SX-07-2 29.9 13.0 58 51.1 11.6 21.7 30.2 105 24.1 126 238 1.25 7.67 915 0.71 18.7 3.47 26.0 1.77 264 8.43 SX-07-3 37.0 16.0 72 61.7 17.0 29.6 28.2 80.0 28.4 141 279 1.36 6.72 946 0.86 20.4 4.22 29.9 2.14 369 10.5 SX-07-5 204 15.3 69 60.1 10.0 28.7 16.7 119 34.8 42.7 166 1.36 7.01 308 0.42 21.6 3.77 27.9 2.09 291 9.54 SX-07-7 90.6 21.5 147 94.1 18.9 41.8 33.2 99.5 33.1 119 219 1.81 8.02 601 1.10 24.2 5.56 28.3 2.20 292 9.64 表 3 石西地区晚古生代泥岩样品稀土元素含量及特征值
Table 3. REY contents and characteristic parameters of late Paleozoic mudstone samples in Shixi area.
样品编号 稀土元素含量(μg/g) L/H (La/Sm)N (Gd/Yb)N (La/Yb)N δCe δEu La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu LREY HREY REY SX-01-2 91.4 180 20.3 77.5 13.6 2.95 10.9 1.55 8.56 44.4 1.76 4.71 0.74 4.79 0.74 385.98 77.40 463.38 4.99 0.92 1.08 1.04 0.90 0.98 SX-01-4 85.3 151 20.8 84.4 15.6 2.92 11.2 1.75 10.2 59.4 2.17 5.76 0.89 5.76 0.89 360.46 97.17 457.64 3.71 0.75 0.93 0.80 0.79 0.85 SX-01-5 74.0 148 17.6 68.0 11.8 1.92 9.74 1.63 10.1 56.9 2.16 5.68 0.90 5.70 0.89 320.94 92.84 413.78 3.46 0.86 0.81 0.70 0.87 0.69 SX-01-10 26.2 50.2 6.57 26.1 5.33 1.61 5.15 1.08 6.87 31.9 1.35 3.21 0.49 2.80 0.41 115.99 52.82 168.81 2.20 0.67 0.87 0.51 0.81 1.13 SX-01-11 66.4 128 14.8 55.3 9.01 1.79 7.02 1.00 5.57 30.2 1.15 3.41 0.56 3.76 0.59 275.57 52.66 328.23 5.23 1.01 0.89 0.96 0.87 0.91 SX-02-2 226 446 54.4 213 34.9 7.35 30.0 4.35 23.0 105 4.71 12.4 1.96 13.3 2.09 981.52 194.28 1175.79 5.05 0.89 1.07 0.92 0.85 0.93 SX-02-4 80.1 145 17.8 68.1 11.4 2.07 9.79 1.51 8.59 45.7 1.78 4.92 0.82 5.35 0.85 324.25 78.51 402.76 4.13 0.96 0.87 0.81 0.83 0.78 SX-02-6 116 198 21.6 72.6 9.52 1.51 9.38 1.32 8.02 45.2 1.86 5.32 0.90 5.77 0.94 418.45 77.74 496.19 5.38 1.66 0.77 1.09 0.82 0.67 SX-02-8 104 199 22.2 85.0 14.4 2.51 12.0 1.81 10.1 47.1 2.00 5.18 0.80 5.00 0.74 427.54 83.99 511.53 5.09 0.99 1.14 1.13 0.92 0.76 SX-02-11 50.1 97.9 11.1 42.7 7.23 1.68 6.28 1.00 5.98 30.3 1.20 3.27 0.53 3.39 0.52 210.74 51.93 262.67 4.06 0.95 0.88 0.80 0.90 0.99 SX-03-1 81.8 164 18.6 61.3 11.3 1.69 9.30 1.28 6.96 32.0 1.31 3.96 0.60 4.07 0.61 338.69 59.48 398.17 5.69 0.99 1.09 1.09 0.78 0.68 SX-03-4 105 207 23.2 77.1 15.1 2.25 12.8 1.79 10.7 54.4 2.02 5.81 0.87 5.89 0.84 429.65 94.28 523.93 4.56 0.95 1.03 0.97 0.79 0.67 SX-03-6 85.9 191 21.2 66.2 13.1 2.71 11.3 1.66 10.3 45.6 1.92 5.51 0.84 5.70 0.79 380.11 82.83 462.94 4.59 0.90 0.94 0.82 0.75 0.90 SX-04-2 80.5 158 18.7 71.9 12.3 2.46 10.1 1.51 9.17 48.2 1.94 5.15 0.83 5.25 0.81 343.41 82.15 425.56 4.18 0.90 0.91 0.83 0.87 0.88 SX-04-4 70.5 134 14.7 54.0 8.61 1.55 7.98 1.23 6.86 32.3 1.39 3.53 0.55 3.43 0.51 283.38 57.27 340.65 4.95 1.12 1.10 1.12 0.90 0.76 SX-05-1 63.7 119 12.8 42.8 5.44 0.97 5.42 0.81 5.03 27.4 1.13 3.30 0.57 3.71 0.59 244.61 47.94 292.55 5.10 1.61 0.69 0.93 0.83 0.74 SX-05-7 80.2 161 18.1 67.4 11.1 1.98 9.63 1.48 8.72 47.7 1.82 4.81 0.76 4.81 0.73 339.77 80.43 420.20 4.22 0.99 0.95 0.91 0.88 0.77 SX-06-1 21.4 33.1 4.57 16.5 3.07 0.95 2.82 0.51 3.15 17.6 0.62 1.72 0.29 1.83 0.30 79.54 28.55 108.10 2.79 0.96 0.73 0.63 0.70 1.23 SX-06-2 206 472 62.5 241 39.7 7.74 29.3 3.64 14.9 44.9 2.48 6.51 0.85 5.47 0.80 1028.78 108.10 1136.87 9.52 0.71 2.54 2.04 0.78 0.95 SX-06-4 54.9 103 11.5 42.8 7.52 1.33 6.63 1.05 5.93 28.6 1.15 3.03 0.48 3.03 0.46 220.60 49.95 270.54 4.42 1.00 1.04 0.98 0.88 0.74 SX-06-6 64.5 123 13.8 51.2 7.62 1.52 6.16 0.88 5.05 26.9 1.09 3.15 0.51 3.26 0.51 261.78 47.02 308.79 5.57 1.16 0.90 1.08 0.89 0.90 SX-07-1 268 543 59.2 213 29.0 4.93 26.6 3.38 16.8 95.9 3.75 11.0 1.77 12.18 1.99 1116.67 171.32 1287.99 6.52 1.27 1.04 1.20 0.88 0.76 SX-07-2 69.3 131 14.6 54.0 8.85 1.42 7.72 1.23 7.21 38.4 1.49 3.96 0.63 4.15 0.65 278.67 64.82 343.50 4.30 1.07 0.88 0.91 0.88 0.68 SX-07-3 84.3 172 18.9 71.5 12.0 2.06 9.93 1.53 8.90 48.6 1.86 4.92 0.79 5.38 0.78 360.62 81.93 442.54 4.40 0.96 0.88 0.85 0.91 0.75 SX-07-5 51.2 84.4 9.50 34.1 7.12 2.10 6.60 1.12 6.51 33.8 1.25 3.09 0.49 3.13 0.49 188.43 56.02 244.45 3.36 0.99 1.00 0.89 0.85 1.20 SX-07-7 84.4 174 18.6 67.2 11.0 2.11 9.90 1.64 9.30 44.4 1.87 4.80 0.74 4.66 0.71 357.40 77.32 434.73 4.62 1.06 1.01 0.98 0.90 0.80 表 4 石西地区泥岩样品黏土矿物组成
Table 4. Clay minerals composition of mudstone samples in Shixi area.
样品编号 黏土矿物相对含量(%) 混合层比例(%S) 样品编号 黏土矿物相对含量(%) 混合层比例(%S) S I/S I K C C/S I/S C/S S I/S I K C C/S I/S C/S SX-01-2 − 21 24 44 11 − 20 − SX-04-2 − 7 40 41 12 − 5 − SX-01-4 − 50 21 22 7 − 25 − SX-04-4 − 2 23 75 − − 5 − SX-01-5 − 40 28 25 7 − 20 − SX-05-1 − 45 32 18 5 − 15 − SX-01-10 − 6 18 76 − − 10 − SX-05-7 − 23 34 43 − − 10 − SX-01-11 − 26 57 17 − − 10 − SX-06-1 − 38 23 21 18 − 15 − SX-02-2 − 36 16 37 11 − 20 − SX-06-2 − 20 34 22 24 − 10 − SX-02-4 − 29 15 41 15 − 25 − SX-06-4 − 22 30 48 − − 10 − SX-02-6 − 45 30 19 6 − 15 − SX-06-6 − 24 18 58 − − 15 − SX-02-8 − 16 30 42 12 − 10 − SX-07-1 − 38 40 16 6 − 10 − SX-02-11 − 15 30 55 − − 10 − SX-07-2 − 47 34 14 5 − 15 − SX-03-1 − 46 28 26 − − 15 − SX-07-3 − 47 37 16 − − 15 − SX-03-4 − 29 28 43 − − 15 − SX-07-5 − 10 20 70 − − 10 − SX-03-6 − 12 22 66 − − 10 − SX-07-7 − 4 30 66 − − 5 − 注:K—高岭石;C—绿泥石;I—伊利石;S—蒙皂石;I/S—伊/蒙间层;C/S—绿/蒙间层;%S—间层比。“—”表示实验未检出。 -
[1] 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669−682.
Xu F Y, Hou W, Xiong X Y, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669−682.
[2] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6): 1−6,121.
Jie M X. Prospects in coalbed methane gas exploration and production in the Eastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(6): 1−6,121.
[3] 李增学, 王明镇, 余继峰, 等. 鄂尔多斯盆地晚古生代含煤地层层序地层与海侵成煤特点[J]. 沉积学报, 2006, 24(6): 834−840. doi: 10.3969/j.issn.1000-0550.2006.06.008
Li Z X, Wang M Z, Yu J F, et al. Sequence stratigraphy of late Paleozoic coal-bearing measures and the transgressive coal-formed features in Ordos Basin[J]. Acta Sedimentologica Sinica, 2006, 24(6): 834−840. doi: 10.3969/j.issn.1000-0550.2006.06.008
[4] 魏若飞, 信凯. 鄂尔多斯盆地东缘石西区块煤层气及致密砂岩气资源潜力评价[J]. 中国煤炭地质, 2022, 34(7): 7−11,38. doi: 10.3969/j.issn.1674-1803.2022.07.02
Wei R F, Xin K. CBM and compact sandstone gas resources potential assessment in Shixi Block, Ordos Basin eastern margin[J]. Coal Geology of China, 2022, 34(7): 7−11,38. doi: 10.3969/j.issn.1674-1803.2022.07.02
[5] 康宇博. 石西区块煤系气水分布模式及可动性研究[D]. 北京: 中国矿业大学(北京), 2022: 35-71.
Kang Y B. Research on distribution pattern and mobility of coal measures gas and water in Shixi Block[D]. Beijing: China University of Mining and Technology (Beijing), 2022: 35-71.
[6] 刘超, 孙蓓蕾, 曾凡桂, 等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报, 2021, 46(4): 1280−1287.
Liu C, Sun B L, Zeng F G, et al. Discovery and origin of helium-rich gas on the Shixi area, eastern margin of the Ordos Basin[J]. Journal of China Coal Society, 2021, 46(4): 1280−1287.
[7] 李家宏. 河东煤田中南部煤系页岩气与煤层气成藏特征对比研究[D]. 北京: 中国矿业大学(北京), 2016: 28-44.
Li J H. Contrast of the reservoir forming characteristics between shale gas and coalbed methane in coal measure, Central and Southern Hedong Coalfield[D]. Beijing: China University of Mining and Technology (Beijing), 2016: 28-44.
[8] Meng Y, Tang D, Xu H, et al. Geological controls and coalbed methane production potential evaluation: A case study in Liulin area, Eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 95−111. doi: 10.1016/j.jngse.2014.07.034
[9] 陈世悦. 论秦岭碰撞造山作用对华北石炭二叠纪海侵过程的控制[J]. 岩相古地理, 1998, 18(2): 48−54.
Chen S Y. The controls of the collisional orogenesis in the Qinling Mountains on the Carboniferous—Permian transgressional processes in North China[J]. Sedimentary Facies and Palaeogeography, 1998, 18(2): 48−54.
[10] Yan M, Chi Q, Gu T, et al. Chemical composition of upper crust in Eastern China[J]. Science in China Series D: Earth Sciences, 1997, 40: 530−593. doi: 10.1007/BF02877620
[11] Nesbitt H, Young G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715−717. doi: 10.1038/299715a0
[12] Bhatia M, Crook K. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181−193. doi: 10.1007/BF00375292
[13] Boynton W. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63−114.
[14] 杨晋东, 赵峰华, 秦胜飞, 等. 华北克拉通北缘中元古界杨庄组碳酸盐岩地球化学特征及其地质意义[J]. 天然气地球科学, 2020, 31(2): 268−281.
Yang J D, Zhao F H, Qin S F, et al. Geochemical characteristics and geological significance of carbonate rocks in the middle Mesoproterozoic Yangzhuang Formation of northern margin of North China Craton[J]. Natural Gas Geoscience, 2020, 31(2): 268−281.
[15] 邹雨. 华北和扬子陆块中新元古代化学地层对比及意义[D]. 北京: 中国矿业大学(北京), 2020: 36-43.
Zou Y. Meso—Neoproterozoic chemostratigraphic correlation and significance in North China and Yangtze Block[D]. Beijing: China University of Mining and Technology (Beijing), 2020: 36-43.
[16] 刘振庄, 白名岗, 杨玉茹, 等. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨[J]. 岩矿测试, 2020, 39(2): 199−207.
Liu Z Z, Bai M G, Yang Y R, et al. Discussion on the genesis and exploration potential of different microscopic forms of organic matters in the Longmaxi Formation shale[J]. Rock and Mineral Analysis, 2020, 39(2): 199−207.
[17] 师展, 赵靖舟, 孙雄伟, 等. 鄂尔多斯盆地东南部上古生界煤系烃源岩特征及生烃潜力评价[J/OL]. 天然气地球科学. [2023-05-20].https://kns.cnki.net/kcms2/detail/62.1177.TE.20230615.1811.002.html.
Shi Z, Zhao J Z, Sun X W, et al. Characteristics and hydrocarbon generation potential of upper Paleozoic coal measure source rocks in the southeast of Ordos Basin[J/OL]. [2023-05-20].https://kns.cnki.net/kcms2/detail/62.1177.TE.20230615.1811.002.html.
[18] Lu J, Shao L Y, Sun B, et al. Sequence-paleogeography and coal accumulation of Carboniferous—Permian coal measures in the Eastern Ordos Basin[J]. Journal of China Coal Society, 2012, 37: 747−754.
[19] 汤艳杰, 贾建业, 谢先德. 粘土矿物的环境意义[J]. 地学前缘, 2002, 9(2): 337−344.
Tang Y J, Jia J Y, Xie X D. Environment significance of clay minerals[J]. Earth Science Frontiers, 2002, 9(2): 337−344.
[20] Meng Q, Liu Z, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun Basin, China[J]. Journal of Asian Earth Sciences, 2012, 45: 95−105. doi: 10.1016/j.jseaes.2011.09.021
[21] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60.
Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60.
[22] 何伟, 吴亮, 魏向成, 等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试, 2022, 41(6): 962−977.
He W, Wu L, Wei X C, et al. Geochemical characteristics of rare, dispersed, and rare earth elements in the middle Jurassic Yan’an Formation of the Ningdong Coalfield and their indication for a sedimentary environment[J]. Rock and Mineral Analysis, 2022, 41(6): 962−977.
[23] Meyer E, Quicksall A, Landis J, et al. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition[J]. Precambrian Research, 2013, 192(1): 89−106.
[24] Maslov A, Podkovyrov V. Ocean redox state at 2500-500Ma: Modern concepts[J]. Lithology and Mineral Resources, 2018, 53: 190−211. doi: 10.1134/S0024490218030057
[25] Sahoo S, Planavsky N, Jiang G, et al. Oceanic oxygenation events in the anoxic Ediacaran Ocean[J]. Geobiology, 2016, 14: 457−468. doi: 10.1111/gbi.12182
[26] 解兴伟, 袁华茂, 宋金明, 等. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 2019, 65(3): 671−688.
Xie X W, Yuan H M, Song J M, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of water environment[J]. Geological Review, 2019, 65(3): 671−688.
[27] 韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2): 76−88. doi: 10.3969/j.issn.1009-3850.2012.02.012
Wei H Y. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76−88. doi: 10.3969/j.issn.1009-3850.2012.02.012
[28] Rimmer S. Geochemical paleoredox indicators in Devonian—Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373−391. doi: 10.1016/j.chemgeo.2003.12.029
[29] 孙彩蓉. 鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D]. 北京: 中国地质大学(北京), 2017: 17-23.
Sun C R. Study on sedimentary facies and geochemistry of trace elements of Carboniferous—Permian shale in the Eastern Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2017: 17-23.
[30] Panahi A, Young G. A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, Western Scotland[J]. Precambrian Research, 1997, 85: 81−96. doi: 10.1016/S0301-9268(97)00033-8
[31] McLennan S. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnson M J, Basu A. Processes controlling the composition of clastic sediments. Geological Society of America, 1993: 21-40.
[32] 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51−63.
Li X L, Zhang X, Lin C M, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51−63.
[33] Young G, Wayne N. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 1999, 111: 264−274. doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2
[34] 杨海欧, 王长城, 李文杰, 等. 基于微量元素比值分析方法研究川东南地区小河坝组沉积环境和古气候环境[J]. 岩矿测试, 2017, 36(3): 289−296.
Yang H O, Wang C C, Li W J, et al. Research on the sedimentary and paleoclimate environment of the Xiaoheba Formation in Southeastern Sichuan based on the trace elements ratio method[J]. Rock and Mineral Analysis, 2017, 36(3): 289−296.
[35] 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405−414.
Xiong X H, Xiao J F. Geochemical indicators of sedimentary environments—A summary[J]. Earth and Environment, 2011, 39(3): 405−414.
[36] 陈代钊, 汪建国, 严德天, 等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1): 5−26. doi: 10.3969/j.issn.0563-5020.2011.01.003
Chen D Z, Wang J G, Yan D T, et al. Environmental dynamics of organic accumulation for the principal Paleozoic source rocks on Yangtze Block[J]. Chinese Journal of Geology, 2011, 46(1): 5−26. doi: 10.3969/j.issn.0563-5020.2011.01.003
[37] 陈文彬. 西藏羌塘盆地上三叠统烃源岩有机地球化学特征[D]. 成都: 成都理工大学, 2012: 14-21.
Chen W B. Geochemistry characterics of late-Triassic source rocks in Qiangtang Basin, Qinghai—Tibet Plateau[D]. Chengdu: Chengdu University of Technology, 2012: 14-21.
[38] 方朝刚, 章诚诚, 林洪, 等. 下扬子西南部前渊带晚奥陶世—早志留世黑色页岩沉积环境与有机质富集机理——以WDD1井为例[J]. 地球科学与环境学报, 2022, 44(2): 312−326.
Fang C G, Zhang C C, Lin H, et al. Sedimentary environment and genesis organic matter enrichment of late Ordovician—early Silurian black shale in the fore deep zone, the Southwestern lower Yangtze Basin, China[J]. Journal of Earth Science and Environment, 2022, 44(2): 312−326.
[39] 夏鹏, 付勇, 杨镇, 等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报, 2020, 94(3): 947−956.
Xia P, Fu Y, Yang Z, et al. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, Northern Guizhou[J]. Acta Geologica Sinica, 2020, 94(3): 947−956.
[40] 张慧芳, 吴欣松, 王斌, 等. 陆相湖盆沉积有机质富集机理研究进展[J]. 沉积学报, 2016, 34(3): 464−477.
Zhang H F, Wu X S, Wang B, et al. Research progress of the enrichment mechanism of sedimentary organics in Lacustrine Basin[J]. Acta Sedimentologica Sinica, 2016, 34(3): 464−477.
[41] 李晓霞, 谷渊涛, 万泉, 等. 泥页岩中有机质-黏土复合体的微观结构、变形作用及源-储意义[J]. 石油与天然气地质, 2023, 44(2): 452−467.
Li X X, Gu Y T, Wan Q, et al. Micro-architecture, deformation and source-reservoir significance of organic-clay composites in shale[J]. Oil and Gas Geology, 2023, 44(2): 452−467.
[42] 杜贵超, 杨兆林, 尹洪荣, 等. 鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J]. 油气地质与采收率, 2022, 29(6): 1−11.
Du G C, Yang Z L, Yin H R, et al. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of Southeast Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 1−11.
[43] 张洁. 鄂尔多斯盆地东部上古生界烃源岩评价[D]. 西安: 西安石油大学, 2012: 25-31.
Zhang J. Source rock evaluation of the upper Palaeozoic in Eastern Ordos Basin[D]. Xi’an: Xi’an Shiyou University, 2012: 25-31.