中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

铁氧化物-二价铁体系在潜流带低渗透区的氧化还原特性研究进展

罗伟嘉, 冯晨, 侯国华, 陈家玮. 铁氧化物-二价铁体系在潜流带低渗透区的氧化还原特性研究进展[J]. 岩矿测试, 2024, 43(2): 397-406. doi: 10.15898/j.ykcs.202309090150
引用本文: 罗伟嘉, 冯晨, 侯国华, 陈家玮. 铁氧化物-二价铁体系在潜流带低渗透区的氧化还原特性研究进展[J]. 岩矿测试, 2024, 43(2): 397-406. doi: 10.15898/j.ykcs.202309090150
LUO Weijia, FENG Chen, HOU Guohua, CHEN Jiawei. Progress on Redox Characteristics of an Iron Oxide-Ferrous System in the Hyporheic Zone[J]. Rock and Mineral Analysis, 2024, 43(2): 397-406. doi: 10.15898/j.ykcs.202309090150
Citation: LUO Weijia, FENG Chen, HOU Guohua, CHEN Jiawei. Progress on Redox Characteristics of an Iron Oxide-Ferrous System in the Hyporheic Zone[J]. Rock and Mineral Analysis, 2024, 43(2): 397-406. doi: 10.15898/j.ykcs.202309090150

铁氧化物-二价铁体系在潜流带低渗透区的氧化还原特性研究进展

  • 基金项目: 国家自然科学基金重点基金项目(41731282)
详细信息
    作者简介: 罗伟嘉,硕士,水文学与水资源专业。E-mail:836381037@qq.com
    通讯作者: 陈家玮,博士,教授,主要从事资源环境领域研究,涉及环境地球化学和应用地球化学的教学与研究工作。E-mail:chenjiawei@cugb.edu.cn
  • 中图分类号: O614.811

Progress on Redox Characteristics of an Iron Oxide-Ferrous System in the Hyporheic Zone

More Information
  • 潜流带是河流与地下水交互的关键带,具有非均质性,其中低渗透区富含的铁氧化物,在污染物的非生物自然衰减过程中发挥着重要作用。本文从铁氧化物和溶解性二价铁Fe(Ⅱ)aq的共存体系出发,评述了该体系的氧化还原能力及影响因素,并以地下水中常见的污染物氯代烃为例阐述了铁氧化物-Fe(Ⅱ)aq体系在氯代烃非生物自然衰减中的作用。指出铁氧化物-Fe(Ⅱ)aq体系的还原能力可用氧化还原电位(Eh)表示,Eh的大小受pH值、温度、溶解氧(DO)、溶解性二价铁浓度、无机和有机配体等因素的影响,可用来定量描述氯代烃等污染物被还原的速率常数。目前铁氧化物-Fe(Ⅱ)aq体系Eh的快速测定、含水层中铁氧化物种类和含量、不同铁氧化物共存和复杂水化学条件下Eh与氯代烃等污染物还原速率常数之间的关系,是准确评估污染物非生物自然衰减能力和程度的重要内容。

  • 加载中
  • 图 1  潜流带的非均质性与铁矿物-Fe(Ⅱ)aq体系

    Figure 1. 

    图 2  潜流带典型氯代烃(四氯乙烯)与铁矿物- Fe(Ⅱ)的氧化还原势

    Figure 2. 

    表 1  常见铁氧化物的类型

    Table 1.  Types of common iron oxides.

    氧化铁 水合羟基氧化铁
    化学式 铁氧化物 化学式 铁氧化物
    β-Fe2O3 β-Fe2O3 Fe5HO8·4H2O 水铁矿
    ε-Fe2O3 ε-Fe2O3 α-FeOOH 针铁矿
    FeO 方铁矿 γ-FeOOH 纤铁矿
    Fe3O4 磁铁矿 β-FeOOH 四方纤铁矿
    γ-Fe3O4 磁赤铁矿 δ’-FeOOH(结晶度低) 六方纤铁矿
    α-Fe2O3 赤铁矿 δ-FeOOH(结晶度高) 六方纤铁矿
    Fe16O16(OH)y(SO4)x·nH2O 施氏矿物
    Fe(OH)3 纳伯尔矿
    FexFey(OH)3x+2yz(A)z (A=Cl;1/2CO32−;1/2SO42−) 绿锈
    注:修改自杨忠兰等(2021)7
    下载: 导出CSV
  • [1]

    He Y T, Wilson J T, Su C, et al. Review of abiotic degradation of chlorinated solvents by reactive iron minerals in aquifers[J]. Ground Water Monitoring and Remediation, 2015, 35(3): 57−75. doi: 10.1111/gwmr.12111

    [2]

    Huang J Z, Wang Q H, Wang Z M, et al. Interactions and reductive reactivity in ternary mixtures of Fe(Ⅱ), goethite, and phthalic acid based on a combined experimental and modeling approach[J]. Langmuir, 2019, 35(25): 8220−8227.

    [3]

    Stewart S M, Hofstetter T B, Joshi P, et al. Linking thermodynamics to pollutant reduction kinetics by Fe(Ⅱ) bound to iron oxides[J]. Environmental Science & Technology, 2018, 52(10): 5600−5609.

    [4]

    Chen Y L, Dong H, Zhang H C. Reduction of isoxazoles including sulfamethoxazole by aqueous Fe-Ⅱ-iron complex: Impact of structures[J]. Chemical Engineering Journal, 2018, 352: 501−509. doi: 10.1016/j.cej.2018.07.052

    [5]

    Li X, Chen Y L, Zhang H C. Reduction of nitrogen-oxygen containing compounds (NOCs) by surface-associated Fe(Ⅱ) and comparison with soluble Fe(Ⅱ) complexes[J]. Chemical Engineering Journal, 2019, 370: 782−791. doi: 10.1016/j.cej.2019.03.203

    [6]

    李响, 蔡元峰. 沉积物中铁氧化物的定量方法及其在白垩纪大洋红层中的应用[J]. 高校地质学报, 2014, 20(3): 433−444.

    Li X, Cai Y F. The quantitative analysis methods for iron oxides in sediment and their application in Cretaceous oceanic red beds[J]. Geological Jounal of China Universities, 2014, 20(3): 433−444.

    [7]

    杨忠兰, 曾希柏, 孙本华, 等. 铁氧化物固定土壤重金属的研究进展[J]. 土壤通报, 2021, 52(3): 728−735.

    Yang Z L, Zeng X B, Sun B H, et al. Research advances on the fixation of soil heavy metals by iron oxide[J]. Chinese Journal of Soil Science, 2021, 52(3): 728−735.

    [8]

    Zhang D N, Cao R, Wang S F, et al. Fate of arsenic during up to 4.5 years of aging of Fe-Ⅲ-As-V coprecipitates at acidic pH: Effect of reaction media (nitrate vs. sulfate), Fe/As molar ratio, and pH[J]. Chemical Engineering Journal, 2020, 388: 124239. doi: 10.1016/j.cej.2020.124239

    [9]

    董有进, 杨立辉, 张硕. 风化壳中主要铁氧化物矿物的研究进展[J]. 安庆师范大学学报(自然科学版), 2018, 24(2): 85−89, 99.

    Dong Y J, Yang L H, Zhang S. Research advances of main iron oxide minerals in weathering crust[J]. Journal of Anqing Normal University (Natual Science Edition), 2018, 24(2): 85−89, 99.

    [10]

    Stumm W, Sulzberger B. The cycling of iron in natural environments-considerations based on laboratory studies of heterogeneous redox processes[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3233−3257. doi: 10.1016/0016-7037(92)90301-X

    [11]

    Melton E D, Swanner E D, Behrens S, et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 2014, 12(12): 797−808. doi: 10.1038/nrmicro3347

    [12]

    何晗晗, 于扬, 刘新星, 等. 赣南小流域水体中溶解态稀土含量及pH和Eh值变化特征[J]. 岩矿测试, 2015, 34(4): 487−493.

    He H H, Yu Y, Liu X X, et al. pH and Eh variations and the drees contens of a small watershed in South Jiangxi Province[J]. Rock and Mineral Analysis, 2015, 34(4): 487−493.

    [13]

    周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319−336.

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319−336.

    [14]

    王妍妍, 曹文庚, 潘登, 等. 豫北平原地下水高砷和高氟分布规律与成因[J]. 岩矿测试, 2022, 41(6): 1095−1109. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206020

    Wang Y Y, Cao W G, Pan D, et al. Distribution and origin of high arsenic and fluoride in groundwater of the North Henan Plain[J]. Rock and Mineral Analysis, 2022, 41(6): 1095−1109. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206020

    [15]

    Amonette J E, Workman D J, Kennedy D W, et al. Dechlorination of carbon tetrachloride by Fe(Ⅱ) associated with goethite[J]. Environmental Science and Technology, 2000, 34(21): 4606−4613. doi: 10.1021/es9913582

    [16]

    Strathmann T J, Stone A T. Mineral surface catalysis of reactions between Fe-Ⅱ and oxime carbamate pesticides[J]. Geochimica et Cosmochimica Acta, 2003, 67(15): 2775−2791. doi: 10.1016/S0016-7037(03)00088-7

    [17]

    Fan D M, Bradley M J, Hinkle A W, et al. Chemical reactivity probes for assessing abiotic natural attenuation by reducing iron minerals[J]. Environmental Science & Technology, 2016, 50(4): 1868−1876.

    [18]

    Chun C L, Penn R L, Arnold W A. Kinetic and microscopic studies of reductive transformations of organic contaminants on goethite[J]. Environmental Science & Technology, 2006, 40(10): 3299−3304.

    [19]

    Jones A M, Kinsela A S, Collins R N, et al. The reduction of 4-chloronitrobenzene by Fe(Ⅱ)-Fe(Ⅲ) oxide systems-correlations with reduction potential and inhibition by silicate[J]. Journal of Hazardous Materials, 2016, 320: 143−149. doi: 10.1016/j.jhazmat.2016.08.031

    [20]

    Cardenas-Hernandez P A, Anderson K A, Murillo-Gelvez J, et al. Reduction of 3-nitro-1, 2, 4-triazol-5-one (NTO) by the hematite-aqueous Fe(Ⅱ) redox couple[J]. Environmental Science & Technology, 2020, 54(19): 12191−12201.

    [21]

    Colon D, Weber E J, Anderson J L. QSAR study of the reduction of nitroaromatics by Fe(Ⅱ) species[J]. Environmental Science & Technology, 2006, 40(16): 4976−4982.

    [22]

    叶力, 周红刚, 成捷凤. Fe(Ⅱ)及键合(Fe(Ⅱ)铁对环境污染物治理的作用研究[J]. 广州化工, 2015, 43(20): 48−49, 67.

    Ye L, Zhou H G, Cheng J F. Study on the effect of Fe(Ⅱ) and bonding Fe(Ⅱ) iron on the environment pollutant control[J]. Guangzhou Chemical Industry, 2015, 43(20): 48−49, 67.

    [23]

    Stumm W. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems [M]. Canada: John Wiley & Sons, 1992: 448.

    [24]

    Orsetti S, Laskov C, Haderlein S B. Electron transfer between iron minerals and quinones: Estimating the reduction potential of the Fe(Ⅱ)-goethite surface from AQDS speciation[J]. Environmental Science & Technology, 2013, 47(24): 14161−14168.

    [25]

    Aeppli M, Voegelin A, Gorski C A, et al. Mediated electrochemical reduction of iron (oxyhydr-)oxides under defined thermodynamic boundary conditions[J]. Environmental Science & Technology, 2018, 52(2): 560−570.

    [26]

    Zarzycki P, Kerisit S, Rosso K M. Molecular dynamics study of Fe(Ⅱ) adsorption, electron exchange, and mobility at goethite (alpha-FeOOH) surfaces[J]. Journal of Physical Chemistry C, 2015, 119(6): 3111−3123. doi: 10.1021/jp511086r

    [27]

    Gorski C A, Edwards R, Sander M, et al. Thermodynamic characterization of iron oxide-aqueous Fe(Ⅱ) redox couples[J]. Environmental Science & Technology, 2016, 50(16): 8538−8547.

    [28]

    Krumina L, Lyngsie G, Tunlid A, et al. Oxidation of a dimethoxyhydroquinone by ferrihydrite and goethite nanoparticles: Iron reduction versus surface catalysis[J]. Environmental Science & Technology, 2017, 51(16): 9053−9061.

    [29]

    Jones A M, Griffin P J, Collins R N, et al. Ferrous iron oxidation under acidic conditions—The effect of ferric oxide surfaces[J]. Geochimica et Cosmochimica Acta, 2015, 156: 241. doi: 10.1016/j.gca.2015.03.001

    [30]

    Sander M, Hofstetter T B, Gorski C A. Electrochemical analyses of redox-active iron minerals: A review of nonmediated and mediated approaches[J]. Environment-al Science & Technology, 2015, 49(10): 5862−5878.

    [31]

    Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry (The third edition)[J]. International Journal of Environmental Analytical Chemistry, 2017, 97(4): 398−399. doi: 10.1080/03067319.2017.1318869

    [32]

    Larese-Casanova P, Kappler A, Haderlein S B. Heterogeneous oxidation of Fe(Ⅱ) on iron oxides in aqueous systems: Identification and controls of Fe(Ⅲ) product formation[J]. Geochimica et Cosmochimica Acta, 2012, 91: 171−186. doi: 10.1016/j.gca.2012.05.031

    [33]

    Klupinski T P, Chin Y P, Traina S J. Abiotic degradation of pentachloronitrobenzene by Fe(Ⅱ): Reactions on goethite and iron oxide nanoparticles[J]. Environmental Science & Technology, 2004, 38(16): 4353−4360.

    [34]

    Silvester E, Charlet L, Tournassat C, et al. Redox potential measurements and Mossbauer spectrometry of Fe(Ⅱ) adsorbed onto Fe(Ⅲ) (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4801−4815. doi: 10.1016/j.gca.2005.06.013

    [35]

    Amirbahman A, Kent D B, Curtis G P, et al. Kinetics of homogeneous and surface-catalyzed mercury(Ⅱ) reduction by iron(Ⅱ)[J]. Environmental Science & Technology, 2013, 47(13): 7204−7213.

    [36]

    Elsner M, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(Ⅱ)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology, 2004, 38(3): 799−807.

    [37]

    Wang Z M, Schenkeveld W D C, Kraemer S M, et al. Synergistic effect of reductive and ligand-promoted dissolution of goethite[J]. Environmental Science & Technology, 2015, 49(12): 7236−7244.

    [38]

    Chen G D, Hofstetter T B, Gorski C A. The role of carbonate in thermodynamic relationships describing pollutant reduction kinetics by iron oxide-bound Fe[J]. Environmental Science & Technology, 2020, 54(16): 10109−10117.

    [39]

    Jones A M, Collins R N, Rose J, et al. The effect of silica and natural organic matter on the Fe(Ⅱ)-catalysed transformation and reactivity of Fe(Ⅲ) minerals[J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4409−4422. doi: 10.1016/j.gca.2009.04.025

    [40]

    Hinkle M A G, Wang Z M, Giammar D E, et al. Interaction of Fe(Ⅱ) with phosphate and sulfate on iron oxide surfaces[J]. Geochimica et Cosmochimica Acta, 2015, 158: 130−146. doi: 10.1016/j.gca.2015.02.030

    [41]

    Vindedahl A M, Stemig M S, Arnold W A, et al. Character of humic substances as a predictor for goethite nanoparticle reactivity and aggregation[J]. Environmental Science & Technology, 2016, 50(3): 1200−1208.

    [42]

    Taujale S, Baratta L R, Huang J Z, et al. Interactions in ternary mixtures of MnO2, Al2O3, and natural organic matter (NOM) and the impact on MnO2 oxidative reactivity[J]. Environmental Science & Technology, 2016, 50(5): 2345−2353.

    [43]

    Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—A review[J]. Geoderma, 2001, 99(3-4): 169−198. doi: 10.1016/S0016-7061(00)00102-6

    [44]

    Zhang H C, Taujale S, Huang J Z, et al. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite[J]. Langmuir, 2015, 31(9): 2790−2799. doi: 10.1021/acs.langmuir.5b00101

    [45]

    Hwang Y S, Liu J, Lenhart J J, et al. Surface complexes of phthalic acid at the hematite/water interface[J]. Journal of Colloid and Interface Science, 2007, 307(1): 124−134. doi: 10.1016/j.jcis.2006.11.020

    [46]

    Leeson A, Lebron C, Stroo H, et al. Summary report: SERDP and ESTCP workshop on research and development needs for chlorinated solvents in groundwater[R]. 2018.

    [47]

    Xiao Z, Jiang W, Chen D, et al. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: A review[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110925. doi: 10.1016/j.ecoenv.2020.110925

    [48]

    Weatherill J J, Atashgahi S, Schneidewind U, et al. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential[J]. Water Research, 2018, 128: 362−382. doi: 10.1016/j.watres.2017.10.059

    [49]

    Estuesta P. Evaluation of the protocol for natural attenuation of chlorinated solvents: Case study at the twin cities army ammunition plant [R]. 2001.

    [50]

    Murray A M, Ottosen C B, Maillard J, et al. Chlorinated ethene plume evolution after source thermal remediation: Determination of degradation rates and mechanisms[J]. Journal of Contaminant Hydrology, 2019, 227: 103551. doi: 10.1016/j.jconhyd.2019.103551

    [51]

    Yu R, Andrachek R G, Lehmicke L G, et al. Remediation of chlorinated ethenes in fractured sandstone by natural and enhanced biotic and abiotic processes: A crushed rock microcosm study[J]. Science of the Total Environment, 2018, 626: 497−506. doi: 10.1016/j.scitotenv.2018.01.064

    [52]

    Wiedemeier T H, Wilson B H, Ferrey M L, et al. Efficacy of an in-well sonde todetermine magnetic susceptibility of aquifer sediment[J]. Ground Water Monitoring and Remediation, 2017, 37(2): 25−34. doi: 10.1111/gwmr.12197

    [53]

    Entwistle J, Latta D E, Scherer M M, et al. Abiotic degradation of chlorinated solvents by clay minerals and Fe(Ⅱ): Evidence for reactive mineral intermediates[J]. Environmental Science & Technology, 2019, 53(24): 14308−14318.

    [54]

    He Y T, Wilson J T, Wilkin R T. Impact of iron sulfide transformation on trichloroethylene degradation[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2025−2039. doi: 10.1016/j.gca.2010.01.013

    [55]

    Kocur C M D, Fan D M, Tratnyek P G, et al. Predicting abiotic reduction rates using cryogenically collected soil cores and mediated reduction potential measurements[J]. Environmental Science & Technology Letters, 2020, 7(1): 20−26.

    [56]

    Ferrey M L, Wilkin R T, Ford R G, et al. Nonbiological removal of cis-dichloroethylene and 1,1-dichloro-ethylene in aquifer sediment containing magnetite[J]. Environmental Science & Technology, 2004, 38(6): 1746−1752.

    [57]

    Ottosen C B, Murray A M, Broholm M M, et al. In situ quantification of degradation is needed for reliable risk assessments and site-specific monitored natural attenuation[J]. Environmental Science & Technology, 2019, 53(1): 1−3.

    [58]

    Brown R A, Wilson J T, Ferrey M. Monitored natural attenuation forum: The case for abiotic MNA[J]. Remediation Journal, 2007, 17(2): 127-137.

    [59]

    Noubactep C. Relevant reducing agents in remediation FeO/H2O systems[J]. Clean-Soil Air Water, 2013, 41(5): 493−502. doi: 10.1002/clen.201200406

  • 加载中

(2)

(1)

计量
  • 文章访问数:  189
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-09-09
修回日期:  2023-11-22
录用日期:  2023-11-26
刊出日期:  2024-04-30

目录