中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

江西洪江—钱山断裂带中低温高氟地热水水文地球化学特征与成因机制

张寿川, 刘凯, 王路瑶, 朱伟, 邓岳飞, 余成华. 江西洪江—钱山断裂带中低温高氟地热水水文地球化学特征与成因机制[J]. 岩矿测试, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028
引用本文: 张寿川, 刘凯, 王路瑶, 朱伟, 邓岳飞, 余成华. 江西洪江—钱山断裂带中低温高氟地热水水文地球化学特征与成因机制[J]. 岩矿测试, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028
ZHANG Shouchuan, LIU Kai, WANG Luyao, ZHU Wei, DENG Yuefei, YU Chenghua. Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province[J]. Rock and Mineral Analysis, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028
Citation: ZHANG Shouchuan, LIU Kai, WANG Luyao, ZHU Wei, DENG Yuefei, YU Chenghua. Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province[J]. Rock and Mineral Analysis, 2024, 43(4): 568-581. doi: 10.15898/j.ykcs.202403030028

江西洪江—钱山断裂带中低温高氟地热水水文地球化学特征与成因机制

  • 基金项目: 中国地质调查局地质调查项目(DD20221677-2);中央财政基本科研业务费资助项目(JKY202406,JKYQN202307)
详细信息
    作者简介: 张寿川,博士,助理研究员,主要从事水文地球化学、地热地质研究工作。E-mail:zhangsc@cags.ac.cn
    通讯作者: 刘凯,正高级工程师,主要从事水工环研究工作。E-mail:acancer@163.com
  • 中图分类号: P641.3;P314

Identifying the Hydrochemical Characteristics and Genetic Mechanism of Medium-Low Temperature Fluoride-Enriched Geothermal Groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province

More Information
  • 江西洪江—钱山断裂沿线中低温地热资源较为丰富,但地热水中氟离子浓度较高,长期使用影响人体健康,探究高氟地热水循环演化机制对合理开发、利用区域地热资源具有重要意义。前人针对本区域地热水的研究仅局限于单一地热田水文地球化学特征分析,未系统分析区域尺度高氟地热水水文地球化学特征和成因机制。为揭示研究区高氟地热水成因机制,本文在洪江—钱山断裂共采集20组水样,基于水化学和氢氧同位素测试结果,结合地热水分布规律及其水文地球化学特征,应用水文地球化学图解法和离子比例关系法探究深大断裂沿线中低温高氟地热水循环演化机制和成藏模式。结果表明:研究区地表水、地下水和地热水中阳离子以钙离子和钠离子为主,阴离子以重碳酸盐为主,水体呈碱性,高氟水主要存在于HCO3-Na型地热水中,氟浓度超过国家标准2~12倍,地表水和地下水中氟含量均未超标。地热水主要接受大气降水补给,补给高程为797~2186m,循环深度为893~1893m,基于石英温标估算热储温度为79.4~113.1℃。高氟地热水化学特征受多种水文地球化学作用叠加影响,富氟矿物风化、溶解是高氟地热水中氟的主要来源,碱性地热水环境和阳离子交换作用也间接影响氟富集过程。

  • 加载中
  • 图 1  洪江—钱山断裂沿线取样点分布

    Figure 1. 

    图 2  洪江—钱山断裂沿线不同水体水化学Piper三线图

    Figure 2. 

    图 3  (a)不同水体样品氢氧同位素关系;(b)地热水Ca2+/Na+与HCO3/Na+关系

    Figure 3. 

    图 4  研究区地热水离子关系图:(a)Na-K-Mg三角图;(b) log(K2/Mg)与log(SiO2)关系

    Figure 4. 

    图 5  (a)矿物饱和指数和矿化度关系;(b) 地热水pH与氟离子浓度关系

    Figure 5. 

    图 6  不同水体样品Gibbs图:(a) Na+/(Na++Ca2+)与TDS关系; (b) Cl/(Cl+HCO3 )与TDS关系

    Figure 6. 

    图 7  (a)地热水化学Na+/Ca2+与F离子关系;(b)氯碱指数关系

    Figure 7. 

    Figure E.1. 

    表 1  水样水化学组分分析测试结果统计

    Table 1.  The analytical results of hydrochemical components of water samples

    水样类型 统计
    类型
    pH 水温
    (℃)
    Ca2+
    (mg/L)
    Mg2+
    (mg/L)
    Na+
    (mg/L)
    K+
    (mg/L)
    HCO3
    (mg/L)
    SO42−
    (mg/L)
    Cl
    (mg/L)
    F
    (mg/L)
    TDS
    (mg/L)
    地表水 最大值 8.31 23.5 4.15 0.38 4.02 1.03 19.90 3.34 1.57 0.30 26.00
    最小值 6.16 17.8 1.28 0.14 1.26 0.31 2.44 0.50 0.27 0.02 14.00
    平均值 7.68 20.31 2.45 0.22 2.10 0.57 11.91 2.01 0.55 0.10 20.75
    地下水 最大值 7.33 30.0 3.51 0.72 19.20 1.67 53.20 5.94 0.83 1.84 64.00
    最小值 6.20 20.1 0.44 0.13 2.60 0.35 10.50 0.43 0.29 0.12 18.00
    平均值 6.91 24.27 1.94 0.43 8.78 1.11 28.43 2.43 0.56 0.79 35.33
    地热水 最大值 8.74 60.0 10.40 0.75 80.90 1.81 94.00 39.70 14.50 14.20 272.00
    最小值 7.40 32.5 0.21 0.01 15.20 0.51 6.16 2.83 0.37 1.69 43.00
    平均值 8.23 45.79 3.12 0.16 40.86 1.16 46.95 18.55 5.85 6.29 138.56
    下载: 导出CSV

    表 2  研究区水样氢氧同位素含量

    Table 2.  The δ2H and δ18O values of groundwater sampled in the study area

    样品 参数 δ2H(‰) δ18O(‰)
    雨水 数值 −43.60 −6.49
    地表水 最大值 −34.65 −5.81
    最小值 −52.00 −8.20
    平均值 −38.81 −6.49
    地下水 最大值 −31.40 −6.40
    最小值 −46.62 −7.85
    平均值 −39.79 −7.22
    地热水 最大值 −42.80 −7.17
    最小值 −71.00 −10.30
    平均值 −55.43 −8.75
    下载: 导出CSV

    表 3  研究区地热水补给高程和循环深度

    Table 3.  The recharge elevation and circulation depth of geothermal groundwater in the study area.

    样品编号 取样点高程
    (m)
    δ2H
    (‰)
    SiO2含量
    (mg/L)
    公式(2)计算的
    补给高程(m)
    公式(3)计算的
    补给高程(m)
    补给高程平均值
    (m)
    循环深度
    (m)
    HQF1 390 −71.00 42.2 2173 2200 2186 1325
    HQF2 639 −48.50 36.9 1443 1075 1259 1150
    HQF3 247 −42.80 30.0 804 790 797 893
    HQF4 375 −65.00 46.7 1896 1900 1898 1460
    HQF5 370 −46.76 48.5 1099 988 1043 1513
    HQF6 206 −59.00 63.2 1467 1600 1533 1893
    HQF7 202 −56.00 45.2 1332 1450 1391 1415
    HQF8 197 −54.50 48.5 1258 1370 1314 1511
    下载: 导出CSV

    表 4  研究区热储温度计算结果

    Table 4.  The calculation results of geothermal reservoir temperature in the study area

    样品编号 水温
    (℃)
    石英温标a
    (℃)
    石英温标b
    (℃)
    石英温标c
    (℃)
    玉髓温标d
    (℃)
    玉髓温标e
    (℃)
    HQF1 38 94.1 95.9 94.3 63.6 65.4
    HQF2 43.2 88.2 90.7 88.5 57.3 59.5
    HQF3 34.6 79.4 83.1 79.8 48.1 50.8
    HQF4 60 98.7 99.8 98.8 68.5 70.0
    HQF5 60 100.4 101.4 100.5 70.4 71.8
    HQF6 47.8 113.1 112.3 113.0 84.1 84.5
    HQF7 22.4 97.1 98.5 97.3 66.9 68.5
    HQF8 49.2 100.4 101.3 100.4 70.3 71.7

    注:a石英温标(无蒸汽损失):T=1309/(5.19−logSiO2)−273.15;b石英温标(最大蒸汽损失):T=1522/(5.75−logSiO2)−273.15;c石英温标: T=−44.19+0.2264×SiO2−1.7414×10−4+79.305×logSiO2;d玉髓温标(无蒸汽损失):T=1032/(4.69−logSiO2)−273.15;e玉髓温标:T=1112/(4.91−logSiO2)−273.15。

    下载: 导出CSV
  • [1]

    汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5−11.

    Wang J Y, Pang Z H, Cheng Y Z, et al. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 2023, 41(12): 5−11.

    [2]

    胡虹羽, 卢国平, 李岩, 等. 琼北地区地热水中氟的富集规律[J]. 环境化学, 2023, 42(5): 1633−1641.

    Hu H Y, Lu G P, Li Y, et al. Study on enrichment of fluorine in geothermal water in Qiongbei area[J]. Environmental Chemistry, 2023, 42(5): 1633−1641.

    [3]

    张浩然, 刘凯, 张垚垚, 等. 江西芦溪县南部大地热流特征[J]. 地球学报, 2024, 45(1): 25−37. doi: 10.3975/cagsb.2023.101001

    Zhang H R, Liu K, Zhang Y Y, et al. Characteristics of terrestrial heat flow in the south of Luxi County, Jiangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 25−37. doi: 10.3975/cagsb.2023.101001

    [4]

    王安东, 孙占学, 蔺文静, 等. 江西省地热资源赋存特征及潜力评价[J]. 中国地质, 2023, 50(6): 1646−1654. doi: 10.12029/gc20210909003

    Wang A D, Sun Z X, Lin W J, et al. Occurrence features of geothermal resources and geothermal potential assessment of Jiangxi Province[J]. Geology in China, 2023, 50(6): 1646−1654. doi: 10.12029/gc20210909003

    [5]

    张垚垚, 刘凯, 童珏, 等. 江西吉安钱山地区地热资源特征及热源机制[J]. 地球学报, 2024, 45(1): 39−52. doi: 10.3975/cagsb.2022.122701

    Zhang Y Y, Liu K, Tong J, et al. Characteristics and heat source mechanism of geothermal resources in Qianshan area of Ji’an, Jiangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 39−52. doi: 10.3975/cagsb.2022.122701

    [6]

    刘峰, 王贵玲, 张薇, 等. 江西宁都县北部大地热流特征及地热资源成因机制[J]. 地质通报, 2020, 39(12): 1883−1890. doi: 10.12097/j.issn.1671-2552.2020.12.002

    Liu F, Wang G L, Zhang W, et al. Terrestrial heat flow and geothermal genesis mechanism of geothermal resources in Northern Ningdu County, Jiangxi Province[J]. Geological Bulletin of China, 2020, 39(12): 1883−1890. doi: 10.12097/j.issn.1671-2552.2020.12.002

    [7]

    Yang J, Huo Z, Li X, et al. Hot weather event-based characteristics of double-early rice heat risk: A study of Jiangxi Province, South China[J]. Ecological Indicators, 2020, 113(1): 106148.

    [8]

    马峰, 王贵玲, 张薇, 等. 古潜山热储开发对地面沉降的影响机制研究[J]. 中国地质, 2021, 48(1): 40−51. doi: 10.12029/gc20210103

    Ma F, Wang G L, Zhang W, et al. Influence mechanism of ancient buried hill geothermal development on land subsidence[J]. Geology in China, 2021, 48(1): 40−51. doi: 10.12029/gc20210103

    [9]

    樊柄宏, 叶海龙, 白细民, 等. 地热流体动态对温汤地热田地热水灌采平衡的指示意义[J]. 地质论评, 2024, 70(S1): 195−198.

    Fan B H, Ye H L, Bai X M, et al. Indicative significance of geothermal fluid dynamics on the balance of geothermal water injection and extraction in Wentang geothermal field[J]. Geological Review, 2024, 70(S1): 195−198.

    [10]

    Cigna F, Tapete D, Garduño-Monroy H V, et al. Wide-area InSAR survey of surface deformation in urban areas and geothermal fields in the eastern Trans—Mexican volcanic belt, Mexico[J]. Remote Sensing, 2019, 11(20): 2341. doi: 10.3390/rs11202341

    [11]

    张永红, 刘冰, 吴宏安, 等. 雄安新区2012—2016年地面沉降InSAR监测[J]. 地球科学与环境学报, 2018, 40(5): 652−662. doi: 10.3969/j.issn.1672-6561.2018.05.013

    Zhang Y H, Liu B, Wu H A, et al. Ground subsidence in Xiong’an New Area from 2012 to 2016 monitored by InSAR technique[J]. Journal of Earth Sciences and Environment, 2018, 40(5): 652−662. doi: 10.3969/j.issn.1672-6561.2018.05.013

    [12]

    邹鹏飞, 王彩会, 杜建国, 等. 地热水系统采灌方案模拟优化研究——以苏北农村清洁能源供暖示范区为例[J]. 水文地质工程地质, 2023, 50(4): 59−72.

    Zou P F, Wang C H, Du J G, et al. A study of simulation and optimization of the production-reinjection scheme of a geothermal water system: A case study of the geothermal space heating demonstration area in Northern Jiangsu countryside[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 59−72.

    [13]

    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1−9.

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1−9.

    [14]

    李娜娜, 陶诚, 孔彦龙, 等. 全球地热发电现状与研究进展[J]. 热力发电, 2024, 53(6): 1−11.

    Li N N, Tao C, Kong Y L, et al. Status and research progress of geothermal power generation development and utilization[J]. Thermal Power Generation, 2024, 53(6): 1−11.

    [15]

    陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800−1808.

    Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800−1808.

    [16]

    韩江涛, 牛璞, 刘立家, 等. 地热资源与地震活动共生深部驱动机制研究现状与展望[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1950−1968.

    Han J T, Niu P, Liu L J, et al. Research status and prospect of deep driving mechanism of co-occurrence of geothermal resources and seismic activities[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1950−1968.

    [17]

    任宇, 曹文庚, 潘登, 等. 2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制[J]. 岩矿测试, 2021, 40(6): 846−859. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106005

    Ren Y, Cao W G, Pan D, et al. Evolution characteristics and change mechanism of arsenic and fluorine in shallow groundwater from a typical irrigation area in lower reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846−859. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106005

    [18]

    吕晓立, 郑跃军, 刘可, 等. 兰州不同城镇功能区地下水氟赋存特征及影响因素[J]. 水文地质工程地质, 2024, 51(2): 215−226.

    Lyu X L, Zheng Y J, Liu K, et al. Characteristic and driving factors of fluoride in groundwater in different urban functional area of Lanzhou City[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 215−226.

    [19]

    Li J, Wu Z, Tian G, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied Geochemistry, 2022, 138: 105211. doi: 10.1016/j.apgeochem.2022.105211

    [20]

    张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 2010, 37(3): 551−562. doi: 10.3969/j.issn.1000-3657.2010.03.002

    Zhang F C, Wen D G, Guo J Q, et al. Research progress and prospect of geological environment in main endemic disease area[J]. Geology in China, 2010, 37(3): 551−562. doi: 10.3969/j.issn.1000-3657.2010.03.002

    [21]

    赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320−324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320−324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    [22]

    Qu S, Duan L, Shi Z, et al. Identifying the spatial pattern, driving factors and potential human health risks of nitrate and fluoride enriched groundwater of Ordos Basin, Northwest China[J]. Journal of Cleaner Production, 2022, 376: 134289. doi: 10.1016/j.jclepro.2022.134289

    [23]

    Wang M Z, Su C L, Wang X G, et al. Spatial pattern, hydrogeochemical controlling processes and non-carcinogenic risks of fluoride-enriched groundwater in the North Henan Plain, Northern China[J]. Applied Geochemistry, 2024, 163: 105934. doi: 10.1016/j.apgeochem.2024.105934

    [24]

    何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621−626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in Northern China[J]. Geology in China, 2010, 37(3): 621−626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    [25]

    Xiao Y, Hao Q C, Zhang Y, et al. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain[J]. Science of the Total Environment, 2022, 802: 149909. doi: 10.1016/j.scitotenv.2021.149909

    [26]

    吴光伟, 李浩林, 王庆兵, 等. 鲁西北平原地下水高氟与高碘成因分析[J]. 岩矿测试, 2023, 42(4): 793−808. doi: 10.15898/j.ykcs.202207190134

    Wu G W, Li H L, Wang Q B, et al. Mobilization mechanisms of high fluorine and iodine groundwater in the Northwest Shandong Plain[J]. Rock and Mineral Analysis, 2023, 42(4): 793−808. doi: 10.15898/j.ykcs.202207190134

    [27]

    王喜宽, 黄增芳, 赵锁志, 等. 河套地区盐碱化和砷氟中毒问题探讨[J]. 岩矿测试, 2007, 26(4): 328−330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    Wang X K, Huang Z F, Zhao S Z, et al. A preliminary study on soil salification and arseniasis-fluorosis in Hetao area[J]. Rock and Mineral Analysis, 2007, 26(4): 328−330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    [28]

    Su H, Kang W R, Li Y R, et al. Fluoride and nitrate contamination of groundwater in the loess plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287. doi: 10.1016/j.envpol.2021.117287

    [29]

    Wang Z, Guo H M, Xing S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372. doi: 10.1016/j.jhydrol.2021.126372

    [30]

    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702

    [31]

    于津生, 虞福基, 刘德平. 中国东部大气降水氢、氧同位素组成[J]. 地球化学, 1987(1): 22−26. doi: 10.3321/j.issn:0379-1726.1987.01.003

    Yu J S, Yu F J, Liu D P. The oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of China[J]. Geochimica, 1987(1): 22−26. doi: 10.3321/j.issn:0379-1726.1987.01.003

    [32]

    Jia W H, Liu K, Yan J K, et al. Characteristics of geothermal waters in Eastern Wugongshan based on hydrogen, oxygen, and strontium isotopes[J]. Applied Geochemistry, 2023, 161: 105874. doi: 10.1016/j.apgeochem.2023.105874

    [33]

    余廷溪, 刘凯, 孙军亮, 等. 江西省安福地区地热水化学特征研究[J]. 地球学报, 2024, 45(1): 99−111. doi: 10.3975/cagsb.2022.121601

    Yu T X, Liu K, Sun J L, et al. Hydrochemical character-istics of geothermal water in Anfu area, Jangxi Province[J]. Acta Geoscientica Sinica, 2024, 45(1): 99−111. doi: 10.3975/cagsb.2022.121601

  • 加载中

(8)

(4)

计量
  • 文章访问数:  536
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2024-03-03
修回日期:  2024-04-12
录用日期:  2024-06-06
刊出日期:  2024-07-31

目录