中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于电子探针分析的辉石分解出溶及初始组分再整合研究

李小犁, 张立飞. 基于电子探针分析的辉石分解出溶及初始组分再整合研究[J]. 岩矿测试, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212
引用本文: 李小犁, 张立飞. 基于电子探针分析的辉石分解出溶及初始组分再整合研究[J]. 岩矿测试, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212
LI Xiaoli, ZHANG Lifei. Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution[J]. Rock and Mineral Analysis, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212
Citation: LI Xiaoli, ZHANG Lifei. Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution[J]. Rock and Mineral Analysis, 2025, 44(2): 201-213. doi: 10.15898/j.ykcs.202410090212

基于电子探针分析的辉石分解出溶及初始组分再整合研究

  • 基金项目: 国家自然科学基金面上项目(41872190)
详细信息
    作者简介: 李小犁,博士,高级工程师,矿物学专业,主要从事电子探针分析、岩石矿物学研究。E-mail:xiaoli.li@pku.edu.cn
  • 中图分类号: P575.1

Electron Microprobe Reintegration Method for Clinopyroxene Breakdown with Lamellae Exsolution

  • 辉石是一种重要的造岩矿物,在温度和压力发生变化的条件下常常发生分解,形成出溶结构。在榴辉岩中,绿辉石在退变质过程中经常会发生不同类型的晶片出溶,包括石英和/或角闪石、斜方辉石以及斜长石晶片的析出,而后者还常常会进一步演化形成单斜辉石-斜长石的后成合晶聚合体。为了研究辉石分解的化学反应,厘定分解前的初始辉石组分,进而探讨母体岩石的温度和压力条件变化及变质演化过程,亟需对其进行组分恢复实验。目前,主要有两种技术方法用于辉石分解出溶前的初始组分再整合分析,包括(1)间接计算法和(2)直接测量法,两者均以电子探针(EPMA)定量分析技术为基础。其中,方法(1)主要依赖于主晶和客晶的化学成分以及相应的组分占比,而方法(2)则主要取决于EPMA分析条件,包括须采用网格分析选项,调节束斑光栅为正方形模式,以及选用堆积计算优化的设置,同时,还需要注意标准样品类型和基体效应对实验结果的影响。本文以基性榴辉岩和退变榴辉岩为研究对象,对其中绿辉石出溶斜方辉石结构(ⅱ类型)和单斜辉石-斜长石后成合晶聚合体(ⅲ类型)分别进行了两种再整合方法的实验分析。结果显示,两种类型的辉石出溶分解情况在很大程度上是一个近似等化学的过程,符合再整合方法的应用前提。在ⅱ类型实验中,方法(1)下获得的初始辉石与样品中的未分解绿辉石在成分上具有更好的一致性,因此该方法更适用于该类型的初始组分再整合;在ⅲ类型实验中,方法(2)下获得的初始辉石在成分上具有更好的耦合性,更适用于该类型的初始组分再整合,不过这与前述实验结果相反,具体原因尚有待进一步探讨。上述两种再整合方法尽管具有一定的局限性,但因其便利性被广泛应用于变质岩石学研究。实际工作中,应该同时采用这两种方法进行对比分析,再根据具体情况择优进行选择。

  • 加载中
  • 图 1  榴辉岩(a-e)和退变榴辉岩样品(f)中单斜辉石出溶类型(背散射电子图像)

    Figure 1. 

    图 2  综合矿物分析系统(TIMA)的薄片扫描结果以及后成合晶重组实验中的目标微区示意图

    Figure 2. 

    图 3  电子探针较大束斑定量分析法实验示意以及目标微区元素分布图

    Figure 3. 

    图 4  造岩矿物辉石和重组辉石成分分类投图

    Figure 4. 

    图 5  电子探针圆形和正方形束斑条件下不同目标微区(a1~a8)的后成合晶类型辉石重组结果成分的对比

    Figure 5. 

    图 6  斜方辉石出溶类型重组辉石与造岩矿物辉石成分对比

    Figure 6. 

    图 7  后成合晶类型重组辉石与造岩矿物辉石成分对比

    Figure 7. 

  • [1]

    赵珊茸, 边秋娟, 王勤燕. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2011: 368−380.

    Zhao S R, Bian Q J, Wang Q Y. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2011: 368−380.

    [2]

    Morimoto N, Fabries J, Ferguson A K, et al. Nomenclature of pyroxenes[J]. American Mineralogist, 1988, 73(9−10): 1123−1133.

    [3]

    Morimoto N, Kitamura M. Q-J diagram for classification of pyroxenes[J]. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1983, 78: 141.

    [4]

    Gasparik T. Phase diagrams for geoscientists: An Atlas of the Earth’s interior[M]. New York: Springer Science+Business Media, 2014: 13−31.

    [5]

    Champness P E, Lorimer G W. Precipitation (exsolution) in an orthopyroxene[J]. Journal of Materials Science, 1973, 8(4): 467−474. doi: 10.1007/BF00550450

    [6]

    朱永峰, 徐新. 西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义[J]. 岩石学报, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86

    Zhu Y F, Xu X. Exsolution texture of two-pyrxoenes in lherzolite from Baijiangtan ophiolitic melange, western Junggar, China[J]. Acta Petrologica Sinica, 2007, 23(5): 1075−1086. doi: 1000-0569/2007/023(05)-1075-86

    [7]

    Feinberg J M, Wenk H R, Renne P R, et al. Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique [J]. American Mineralogist, 2004, 89(2−3): 462−466. doi: 10.2138/am-2004-2-328

    [8]

    刘良, 杨家喜, 章军锋, 等. 超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战[J]. 科学通报, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387

    Liu L, Yang J X, Zhang J F, et al. Exsolution microstructures in ultrahigh-pressure rocks: Progress, controversies and challenges[J]. Chinese Science Bulletin, 2009, 54(10): 1387−1400. doi: 10.1360/csb2009-54-10-1387

    [9]

    Katayama I, Parkinson C D, Okamoto K, et al. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav Massif, Kazakhstan[J]. American Mineralogist, 2000, 85(10): 1368−1374. doi: 10.2138/am-2000-1004

    [10]

    Gayk T, Kleinschrodt R, Langosch A, et al. Quartz exsolution in clinopyroxene of high-pressure granulite from the Münchberg Massif [J]. European Journal of Mineralogy, 1995, 7(5): 1217−1220. doi: 10.1127/ejm/7/5/1217

    [11]

    Page F Z, Essene E J, Mukasa S B. Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA[J]. Journal of Metamorphic Geology, 2003, 21(7): 685−698. doi: 10.1046/j.1525-1314.2003.00479.x

    [12]

    Page F Z, Essene E J, Mukasa S B. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the eastern Blue Ridge, southern Appalachians, USA[J]. American Mineralogist, 2005, 90(7): 1092−1099. doi: 10.2138/am.2005.1761

    [13]

    Zhang L, Song S, Liou J G, et al. Relic coesite exsolution in omphacite from western Tianshan eclogites, China[J]. American Mineralogist, 2005, 90(1): 181−186. doi: 10.2138/am.2005.1587

    [14]

    Anderson E D, Moecher D P. Omphacite breakdown reactions and relation to eclogite exhumation rates[J]. Contributions to Mineralogy and Petrology, 2007, 154: 253−277. doi: 10.1007/s00410-007-0192-x

    [15]

    Gopon P, Forshaw J B, Wade J, et al. Seeing through metamorphic overprints in Archean granulites: Combined high-resolution thermometry and phase equilibrium modeling of the Lewisian Complex, Scotland[J]. American Mineralogist, 2022, 107(8): 1487−1500. doi: 10.2138/am-2022-8214CCBY

    [16]

    Liu X, Zhao Z, Zhao Y, et al. Pyroxene exsolution in mafic granulites from the Grove Mountains, East Antarctica: Constraints on Pan-African metamorphic conditions[J]. European Journal of Mineralogy, 2003, 15(1): 55−65. doi: 10.1127/0935-1221/2003/0001-0055

    [17]

    Wu C, Zhang L, Li Q, et al. Tectonothermal transition from continental collision to post-collision: Insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, Central Himalaya)[J]. Journal of Metamorphic Geology, 2022, 40(5): 955−981.

    [18]

    Su W, You Z, Wang R. Quartz and clinoenstatite exsolution in clinopyroxene of garnet-pyroxenolite from the North Dabie Mountains, eastern China [J]. Chinese Science Bulletin, 2001, 46(17): 1482−1485. doi: 10.1007/BF03187037

    [19]

    Alifirova T A, Pokhilenk L N, Korsakov A V. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia[J]. Lithos, 2015, 226: 31−49. doi: 10.1016/j.lithos.2015.01.020

    [20]

    赵珊茸, 徐畅, 徐海军, 等. 海南文昌二辉橄榄岩中辉石出溶结构的结晶学取向分析[J]. 岩石学报, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52

    Zhao S R, Xu C, Xu H J, et al. Crystallographic orientation of the exsolution microstructure in pyroxene, occurring in lherzolite from Wenchang area, Hainan, China[J]. Acta Petrologica Sinica, 2016, 32(6): 1644−1652. doi: 1000-0569/20161032(06)-1644-52

    [21]

    Smyth J R. Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites[J]. American Mineralogist, 1980, 65(11−12): 1185−1191.

    [22]

    Gasparik T. Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2[J]. Contribution to Mineralogy and Petrology, 1985, 71: 13−22. doi: 10.1007/BF00381556

    [23]

    Konzett J, Frost D J, Proyer A, et al. The CaEskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: An experimental study to 15GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite[J]. Contribution to Mineralogy and Petrology, 2008, 155(2): 215−228. doi: 10.1007/s00410-007-0238-0

    [24]

    Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 36(1): 1−22. doi: 10.1111/jmg.12280

    [25]

    Li X, Zhang L, Bader T. The metamorphic PT history of Precambrian Belomorian eclogites (Shirokaya Salma), Russia[J]. Journal of Metamorphic Geology, 2021, 39(3): 363−389. doi: 10.1111/jmg.12573

    [26]

    Joanny V, van Roermund H, Lardeaux J M. The clinopyroxene/plagioclase symplectite in retrograde eclogites: A potential geothermobarometer[J]. Geologische Rundschau, 1991, 80: 303−320. doi: 10.1007/BF01829368

    [27]

    Zertani S, Morales L F G, Menegon L. Omphacite break-down: Nucleation and deformation of clinopyroxene-plagioclase symplectites[J]. Contributions to Mineralogy and Petrology, 2024, 179: 40. doi: 10.1007/s00410-024-02125-0

    [28]

    Dobrzhinetskaya L F, Schweinenage R, Massonne H J, et al. Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: Evidence of deep subduction[J]. Journal of Metamorphic Geology, 2002, 20(5): 481−492. doi: 10.1046/j.1525-1314.2002.00383.x

    [29]

    Liu F, Zhang L, Li X, et al. The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating[J]. Precambrian Research, 2017, 289: 31−47. doi: 10.1016/j.precamres.2016.11.011

    [30]

    Holland T J B. The reaction albite=jadeite+quartz determined experimentally in the range 600−1200℃[J]. American Mineralogist, 1980, 65(1−2): 129−134.

  • 加载中

(7)

计量
  • 文章访问数:  97
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2024-10-09
修回日期:  2024-12-03
录用日期:  2024-12-09
网络出版日期:  2025-01-17
刊出日期:  2025-03-20

目录