GENESIS, ACCUMULATION AND DISTRIBUTION OF CO2 IN THE YINGGEHAI-QIONGDONGNAN BASINS,
-
摘要:
莺-琼盆地是中国南海北部重要的天然气产区,部分地区天然气中CO2含量高,制约了天然气勘探的经济性。CO2成因、成藏及分布规律的研究有助于低CO2含量的优质天然气勘探。在天然气地球化学特征剖析的基础上,结合区域地质条件,综合研究了莺-琼盆地天然气中CO2的成因和来源,剖析了天然气成藏机制和CO2分布规律。研究认为:莺-琼盆地天然气中CO2含量变化大且成因复杂,来源各异;发育3种天然气成藏模式,其控制了天然气中CO2的差异性分布;莺歌海盆地高CO2天然气的分布受控于底辟活动和超压,而琼东南盆地高CO2天然气的成藏与分布则主要与深大断裂及火山活动有关。因此,莺-琼盆地不同地区优质天然气勘探应采用不同的思路和对策:莺歌海盆地应在输导体系发育、天然气成藏较早且保存条件好的底辟波及区中深层寻找优质天然气;琼东南盆地则应在无火山活动和无深大断裂发育、天然气生运聚及保存条件好的地区寻找优质天然气,或者在深大断裂发育或火山活动地区寻找保存条件好、未受破坏的早期形成的优质天然气藏。
Abstract:Yinggehai-Qiongdongnan Basins are the major gas producers in the north of South China Sea.However, high content of CO2 in some areas restricts the economic efficiency of natural gas exploration.Genesis, accumulation process and distribution pattern of CO2 in natural gas are studied in this paper based on the geochemical characteristics of the natural gas as well as regional geological settings.CO2 in the natural gases in the Yinggehai-Qiongdongnan Basins changes in a broad range in content and has quite complicated origin.There are three types of natural gas accumulation mechanisms controlling the distribution pattern of CO2 in different areas.In the Yinggehai Basin, high content of CO2 in natural gas is controlled by diapir structure and overpressure.In the Qiongdongnan Basin, however, high content of CO2 is related generally to deep fractures and volcanic activities.Based on the distribution pattern of CO2, favorable fields are proposed for exploration of high quality natural gas, such as the middle and deep layers in diapir-affected zones with early gas accumulation, abundant micro-fractures and good sealing conditions in the Yinggehai Basin, and the areas with good migration and sealing conditions but lack of volcanic activities and deep fractures in the Qiongdongnan Basin.
-
图 2 莺-琼盆地天然气中CO2含量与碳同位素关系(图版据文献[15])
Figure 2.
图 3 莺歌海盆地东方区不同底辟能量场天然气成藏模式(据文献[5]修改)
Figure 3.
表 1 莺-琼盆地典型天然气组成及碳同位素分布
Table 1. Chemical and carbon isotopic composition of natural gas in the Yinggehai-Qiongdongnan Basins
盆地 构造 层段 天然气组成/% 碳同位素δ13C/‰ 3He/4He×(10-7) R/Ra C1 C2+ N2 CO2 CO2 C1 莺歌海盆地 X1-1浅层 莺歌海组 28.0~84.7/67.3* 0.6~3.2/1.9 1.1~34.8/14.6 0.2~64.8/16.3 -54.1~-31.7/-37.6 -20.7~-2.8/-11.6 0.5~6.8/1.8 0.03~0.48 X1-1中深层 黄流组 43.1~84.7/73.8 1.6~3.5/2.2 5.2~12.5/9.3 2.1~49.5/14.7 -33.1~-30.1/-31.5 -8.0~-0.7/-5.8 4.7 0.34 X13-1中深层 黄流组 22.7~66.5/43.2 0.5~1.7/1.1 3.0~9.2/5.7 22.2~73.8/49.9 -32.9~31.9/-32.5 -6.6~-3.9/-4.9 -** - X1-1S浅层 莺歌海组 7.1~44.9/18.5 0.01~1.7/0.8 3.3~19.9/9.0 34.6~88.0/71.7 -43.8~-31.3/-35.5 -6.6~-3.8/-5.6 - - X13-2中深层 黄流组 69.0~82.4/79.5 1.8~2.9/2.4 12.4~27.7/15.8 1.4~2.4/2.1 -38.9~-32.3/-35.7 -17.0~-7.2/-10.9 - - X29-1 莺歌海组 6.5~65.8/22.5 0.2~1.4/0.6 3.9~23.7/11.4 9.0~88.9/65.4 -35.6~-29.1/-32.2 -5.9~-2.1/-3.5 1.9~4.7/2.7 0.13~0.33 Z22-1 乐东组莺歌海组 13.4~81.9/68.6 0.9~2.5/1.8 5.3~22.2/17.1 0.01~80.4/12.5 -40.2~-26.9/-34.2 -12.7~-2.2/-6.7 0.4~1.0/0.7 0.03~0.07 Z15-1 乐东组莺歌海组 5.3~54.8/25.7 0.5~3.3/1.9 0.8~13.0/5.8 28.9~93.4/66.6 -35.7~-32.3/-34.2 -8.2~-4.2/-6.0 3.7~5.7/4.5 0.26~0.40 Z8-1 乐东组莺歌海组 15.8~91.7/45.2 1.0~2.3/1.8 1.7~4.5/3.0 4.5~80.8/50.0 -41.8~-29.1/-32.9 -8.5~-2.5/-4.7 8.4~21.9/16.8 0.60~1.56 琼东南盆地 B19-2、B19-4B19-5、 三亚组陵水组 1.3~79.7/20.5 0.1~8.4/1.4 0.1~6.3/2.7 1.2~97.2/74.5 -46.8~-35.2/-39.5 -7.5~-3.9/-5.2 34.6~87.5/61.7 2.47~6.25 Y13-1 陵水组 82.2~89.0/84.8 2.9~9.0/6.4 1.0~1.2/1.1 7.7~8.5/8.1 -39.9~-39.4/-39.6 -10.3~-5.1/-7.7 1.1~4.8/2.9 0.08~0.34 L22-1 黄流组 91.2~91.7/91.4 7.5~8.0/7.7 0.5~0.6/0.6 0.3/0.3 -39.2~-38.8/-39.0 -9.2~-7.4/-8.4 - - *分布范围/平均值;**无数据 -
[1] Hao F, Li S T, Sun Y C, et al.Characteristics and origin of the gas and condensate in the Yinggehai Basin, offshore South China Sea:evidence for effects of overpressure on petroleum generation and migration[J].Organic Geochemistry, 1996, 24(3):363-375.
[2] Huang B J, Xiao X M, Li X X.Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea[J].Organic Geochemistry, 2003, 34(7):1009-1025. doi: 10.1016/S0146-6380(03)00036-6
[3] 何家雄, 刘全稳.南海北部大陆架边缘盆地CO2成因和运聚规律的分析与预测[J].天然气地球科学, 2004, 15:12-19. doi: 10.3969/j.issn.1672-1926.2004.01.003
[4] 谢玉洪, 刘平, 黄志龙.莺歌海盆地高温超压天然气成藏地质条件及成藏过程[J].天然气工业, 2012, 32(4):19-23. doi: 10.3787/j.issn.1000-0976.2012.04.005
[5] 徐新德, 张迎朝, 裴健翔, 等.莺歌海盆地东方区天然气成藏模式及天然气勘探策略[J].地质学报, 2014, 88(5):956-965. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405012
[6] 童传新, 谢玉洪, 黄志龙, 等.莺歌海盆地高温高压天然气地球化学特征及底辟翼部高效成藏模式[J].天然气工业, 2015, 35(2):1-11. doi: 10.3787/j.issn.1000-0976.2015.02.001
[7] 李思田, 解习农, 焦养泉.南海北部边缘盆地充填序列和充填样式[M]//龚再升, 李思田, 谢俊泰.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社, 1997:70-74.
[8] 朱伟林, 张功成, 高乐.南海北部大陆边缘盆地油气地质特征与勘探方向[J].石油学报, 2008, 29(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200801001
[9] 朱伟林, 米立军.中国海域含油气盆地图集[M].北京:石油工业出版社, 2010:110.
[10] 黄保家, 肖贤明, 董伟良.莺歌海盆地烃源岩特征及天然气生成演化模式[J].天然气工业, 2002, 22(1):26-30. doi: 10.3321/j.issn:1000-0976.2002.01.007
[11] Schoell M.Genetic characterization of natural gases[J].Bulletin of American Association of Petroleum Geologists, 1983, 67(12):2225-2238. http://cn.bing.com/academic/profile?id=439372d06ae7654d09962afdcfc05698&encoded=0&v=paper_preview&mkt=zh-cn
[12] Schoell M, Jenden P D, Beeunas M A, et al.Isotope analysis of gases in gas field and gas storage operations[J].Jawra Journal of the American Water Resources Association, 1993, 14(14):384-393. https://www.onepetro.org/conference-paper/SPE-26171-MS
[13] 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学, 1993, 4(2/3):1-40. http://www.cqvip.com/qk/97226X/199302/1184634.html
[14] 戴金星, 戴春森, 宋岩, 等.中国东部无机成因的二氧化碳气藏及其特征[J].中国海上油气(地质), 1994, 8(4):215-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400608716
[15] 戴金星.天然气碳同位素特征和各类天然气鉴别[J].天然气地球科学, 1993, 2/3:1-40. http://www.cnki.com.cn/Article/CJFD1993-TDKX1993Z1000.htm
[16] Wakita H, Sano Y.3He/4He ration in CH4-rich gases suggest magmatic origin[J].Nature, 1983, 305(5937):792-794. doi: 10.1038/305792a0
[17] Xu Y C, Shen P, Tao M X, et al.Distribution of the helium isotopes in natural gases from oil-gas-bearing basins in China[J].Chinese Science Bulletin, 1994, 39(22):1905-1911. http://cn.bing.com/academic/profile?id=4cbd8c18c54bcc2f4b1caaa8f8e915d5&encoded=0&v=paper_preview&mkt=zh-cn
[18] Lollar B S, O'Nions R K, Ballentine C J.Helium and isotopes systematics in carbon dioxide-rich and hydrocarbon rich gas reservoirs[J].Geochimica et Cosmochimica Acta, 1994, 58(23):5279-5290. doi: 10.1016/0016-7037(94)90311-5
[19] 张敏强.莺歌海盆地底辟构造带天然气运聚特征[J].石油大学学报(自然科学版), 2000, 24(4):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb200004010
[20] 郝芳, 李思田, 龚再升, 等.莺歌海盆地底辟发育机理与流体幕式充注[J].中国科学(D辑), 2001, 31(6):471-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200106005
[21] 何家雄, 徐瑞松, 刘全稳, 等.莺歌海盆地泥底辟发育演化及天然气及CO2运聚成藏规律[J].海洋地质与第四纪地质, 2008, 28(1):91-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200801012
[22] 张迎朝, 徐新德, 王立锋, 等.南海北部超压低渗气藏成藏过程与成藏模式--以莺歌海盆地XF区XF13-1超压气田为例[J].天然气地球科学, 2015, 26(9):1679-1688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201509007
[23] 滕吉文, 王光杰, 张中杰, 等.华南大陆S波三维速度结构与郯庐断裂带的南延[J].科学通报, 2000, 45(23):2492-3497. doi: 10.3321/j.issn:0023-074X.2000.23.005