ADVANCES IN BIOGEOCHEMICAL STUDY OF GLYCEROL DIETHER MEMBRANE LIPIDS
-
摘要:
甘油二醚膜类脂化合物相对其他类脂生物标志物而言,通常具有较特定的微生物来源及环境指示意义,目前国内外还未有相关的综述性报道。综述了该类型化合物的测试方法,古菌和细菌二醚的组成特征,重点评述了如产甲烷菌、甲烷氧化菌、嗜盐菌等古菌,以及硫酸盐还原菌、Aquificales及一些嗜热细菌,在极端环境(如冷泉、热泉、热液系统)研究中甘油二醚膜类脂化合物应用的进展和可能经历的生物地球化学过程。简要介绍了环境对甘油二醚膜类脂分布的影响,并对其及其他类脂生物标志物的应用前景和发展趋势进行了展望。
Abstract:Compared with other lipid biomarkers, glycerol diether membrane lipids generally bear more specific implications for provenance and environment. Up to date, comprehensive reviews on this topic are rare in both domestic and international literatures. In this paper, we made a brief review on the analytical methods of glycerol diethers, the composition characteristics of archaeal diethers and bacterial diethers, with emphasis on Archaea (e.g., methanogens, methanotrophs, halophiles) and bacteria (e.g., sulfate-reducing bacteria, Aquificales, and some thermophiles).Special attention is paid to the application of glycerol diether membrane lipids and possible biogeochemical processes to the study of extreme environment, such as cold seep, hot spring and hydrothermal systems.The impacts of environmental parameters on the distribution of glycerol diether membrane lipids are briefly introduced and future application of diethers and other lipid biomarkers are discussed.
-
Key words:
- archaeal diether /
- bacterial diether /
- biogeochemistry process /
- environmental parameter /
- extremophile
-
表 1 微生物培养物和环境样品中DGDs组成信息
Table 1. List of DGDs compositions of the samples in microbiological cultures and environment
微生物培养物或环境样品 组成(烷基链长) 文献 Thermodesulfobacterium commune 16/16, 16/17, 17/17, 17/18和18/18 [2] Aquifex pyrophilus 16/16, 17/17和17/18 [4] Ammonifex degensii 16/16, 16/17和17/17 [5] Aquificales C17—C21 [6] Thermodesulfobacterium geofontis sp. nov. 16/16, 17/16, 18/16, 18/17和18/18 [3] 黄石公园的蓝细菌菌席 15/15 [69, 70] 新西兰Waiotapu和OrakeiKorako泉华 15/15, 16/17, 17/17, 18/17, 19/18 [12] 新西兰Champagne Pool泉华 16/17, 17/17, 18/18 [13, 14] Lost City碳酸盐岩烟囱 正构烷基和iso/anteiso支链烷基C13—C 18 [18, 67] 冷泉碳酸盐岩壳 C14—C17 [66, 68] MAR Turtle Pits硫化物 i15/i15, i15/16, i15/16, i15/17, i15/17 [36] MAR Turtle Pits硫化物 18/18, 18/19和18:1/20 [37] -
[1] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12): 4576. http://www.bioone.org/servlet/linkout?suffix=i0094-8373-26-3-386-Woese1&dbid=8&doi=10.1666%2F0094-8373(2000)026<0386%3ABPNGNS>2.0.CO%3B2&key=2112744
[2] Langworthy T A, Holzer G, Zeikus J G, et al. Iso-and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune[J]. Systematic and Applied Microbiology, 1983, 4(1): 1-17. doi: 10.1016/S0723-2020(83)80029-0
[3] Hamilton-Brehm S D, Gibson R A, Green S J, et al. Thermodesulfobacteriumgeofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park[J]. Extremophiles, 2013, 17(2): 251-263. doi: 10.1016/S0723-2020(83)80029-0
[4] Huber R, Wilharm T, Huber D, et al. Aquifexpyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria[J]. Systematic and Applied Microbiology, 1992, 15(3): 340-351. http://www.sciencedirect.com/science/article/pii/S0723202011802067
[5] Huber R, Rossnagel P, Woese C R, et al. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifexdegensii gen. nov. sp. nov[J]. Systematic and Applied Microbiology, 1996, 19(1): 40-49. doi: 10.1016/S0723-2020(96)80007-5
[6] Jahnke L L, Eder W, Huber R, et al. Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those ofAquificales Representatives[J]. Applied and Environmental Microbiology, 2001, 67(11): 5179-5189.
[7] Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositions in a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Chinese Science Bulletin, 2011, 56(16): 1700-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e201116010
[8] Lincoln S A, Bradley A S, Newman S A, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2013, 60: 45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9df43783b19e07b6ad90a94344782db
[9] Pan A, Yang Q, Zhou H, et al. A diagnostic GDGT signature for the impact of hydrothermal activity on surface deposits at the Southwest Indian Ridge[J]. Organic Geochemistry, 2016, 99: 90-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0c6e35da7a478110252f13a3ea6b8d8
[10] Ward D M, Brassell S C, Eglinton G. Archaebacterial lipids in hot-spring microbial mats[J]. Nature, 1985, 318(6047): 656-659. doi: 10.1038/318656a0
[11] Pancost R D, Pressley S, Coleman J M, et al. Lipid biomolecules in silica sinters: indicators of microbial biodiversity[J]. Environmental Microbiology, 2005, 7(1): 66-77. http://www.ncbi.nlm.nih.gov/pubmed/15643937
[12] Pancost R D, Pressley S, Coleman J M, et al. Composition and implications of diverse lipids in New Zealand geothermal sinters[J]. Geobiology, 2006, 4(2): 71-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1472-4669.2006.00069.x
[13] Kaur G, Mountain B W, Pancost R D. Microbial membrane lipids in active and inactive sinters from Champagne Pool, New Zealand: elucidating past geothermal chemistry and microbiology[J]. Organic Geochemistry, 2008, 39(8): 1024-1028.
[14] Kaur G, Mountain B W, Hopmans E C, et al. Relationship between lipid distribution and geochemical environment within Champagne Pool, Waiotapu, New Zealand[J]. Organic Geochemistry, 2011, 42(10): 1203-1215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4393d286ec77858e9c40f0437544fdde
[15] Xie W, Zhang C L, Wang J, et al. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables[J]. Environmental Microbiology, 2015, 17(5): 1600-1614.
[16] Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18(6): 617-628. http://dx.doi.org/10.1002/rcm.1378
[17] Schouten S, Hoefs M J L, Koopmans M P, et al. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments[J]. Organic Geochemistry, 1998, 29(5-7): 1305-1319. http://www.sciencedirect.com/science/article/pii/S0146638098001314
[18] Bradley A S, Hayes J M, Summons R E. Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 102-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c07a7c09567d43285c82f81f49f3f47e
[19] Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12): 1668-1677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c5d479998b983703e57ba016513cce5
[20] Lipp J S. Intact membrane lipids as tracers for microbial life in the marine deep biosphere[D]. Bremen: University of Bremen, 2008.
[21] Rossel P E, Lipp J S, Fredricks H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J]. Organic Geochemistry, 2008, 39(8): 992-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e02678443653a16555381af80fdfc2a
[22] Koga Y, Morii H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects[J]. Bioscience, biotechnology, and biochemistry, 2005, 69(11): 2019-2034. doi: 10.1271/bbb.69.2019
[23] Langworthy T A. Lipids of Archaebacteria[M]. Woese, C R, Wolfe R S.Academic, New York, 1985: 459-497.https://doi.org/10.1016/S0721-9571(82)80036-7
[24] Ferrante G, Ekiel I, Patel G B, et al. Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrixconcilii GP6[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1988, 963(2): 162-172. doi: 10.1016/0005-2760(88)90277-9
[25] Lai D, Springstead J R, Monbouquette H G. Effect of growth temperature on ether lipid biochemistry in Archaeoglobusfulgidus[J]. Extremophiles, 2008, 12(2): 271-278. doi: 10.1007/s00792-007-0126-6
[26] Koga Y, Morii H, Akagawa-Matsushita M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(2): 230-236. doi: 10.1271/bbb.62.230
[27] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751
[28] Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31(12): 1685-1701. doi: 10.1016/S0146-6380(00)00106-6
[29] Orphan V J, Hinrichs K U, Ussler W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001, 67(4): 1922-1934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001749894
[30] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[31] Elvert M, Hopmans E C, Treude T, et al. Spatial variations of archaeal-bacterial assemblages in gas hydrate bearing sediments at a cold seep: implications from a high resolution molecular and isotopic approach[J]. Geobiology, 2005, 3: 195-209. doi: 10.1111/j.1472-4669.2005.00051.x
[32] Pancost R D, Hopmans E C, Sinninghe Damsté S S. Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation[J]. Geochimicaet Cosmochimica Acta, 2001, 65(10): 1611-1627. doi: 10.1016/S0016-7037(00)00562-7
[33] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583): 1013-1015. doi: 10.1126/science.1072502
[34] Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11111-11116. doi: 10.1073/pnas.0401188101
[35] Jaeschke A, Eickmann B, Lang S Q, et al. Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge[J]. Extremophiles, 2014, 18(3): 545-560. doi: 10.1007/s00792-014-0640-2
[36] Blumenberg M, Seifert R, Petersen S, et al. Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge[J]. Geobiology, 2007, 5(4): 435-450. doi: 10.1111/j.1472-4669.2007.00126.x
[37] Blumenberg M, Seifert R, Buschmann B, et al. Biomarkers reveal diverse microbial communities in black smoker sulfides from turtle pits (Mid-Atlantic Ridge, Recent) and YamanKasy (Russia, Silurian)[J]. Geomicrobiology Journal, 2012, 29(1): 66-75. doi: 10.1080/01490451.2010.523445
[38] Pancost R D, McClymont E L, Bingham E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry, 2011, 42(10): 1279-1287. doi: 10.1016/j.orggeochem.2011.07.003
[39] Wagner D, Lipski A, Embacher A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592. doi: 10.1111/j.1462-2920.2005.00849.x
[40] Lim K L H, Pancost R D, Hornibrook E R C, et al. Archaeol: an indicator of methanogenesis in water-saturated soils[J]. Archaea, 2012, 2012:1-9.
[41] Pease T K, Van Vleet E S, Barre J S. Diphytanyl glycerol ether distributions in sediments of the Orca Basin[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3469-3479. doi: 10.1016/0016-7037(92)90391-U
[42] Niemann H, Elvert M, Hovland M, et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area)[J]. Biogeosciences Discussions, 2005, 2(4): 1197-1241. doi: 10.5194/bgd-2-1197-2005
[43] Sprott G D, Dicaire C J, Choquet C G, et al. Hydroxydi-ether lipid structures in Methanosarcina spp. and Methanococcus voltae[J]. Applied and Environmental Microbiology, 1993, 59(3): 912-914.
[44] Sprott G D, Brisson J R, Dicaire C J, et al. A structural comparison of the total polar lipids from the human archaea Methanobrevibactersmithii and Methanosphaerastadtmanae and its relevance to the adjuvant activities of their liposomes[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1999, 1440(2/3): 275-288.
[45] Upasani V N, Desai S G, Moldoveanu N, et al. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains[J]. Microbiology, 1994, 140(8): 1959-1966. doi: 10.1099/13500872-140-8-1959
[46] Rossel P E, Elvert M, Ramette A, et al. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids[J]. Geochimica et Cosmochimica Acta, 2011, 75(1): 164-184. doi: 10.1016/j.gca.2010.09.031
[47] Aquilina A, Knab N J, Knittel K, et al. Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes[J]. Organic Geochemistry, 2010, 41(4): 414-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3219382e68ffcdd4244577f4da506743
[48] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
[49] Koga Y, Nakano M. A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny[J]. Systematic and Applied Microbiology, 2008, 31(3): 169-182. doi: 10.1016/j.syapm.2008.02.005
[50] Summons R E, Meyer-Dombard D R, Bradley A S, et al. New lipids from cultured archaea and environmental samples[C]//AGU Fall Meeting Abstracts, 2006.
[51] Pancost R D, Sinninghe Damsté S S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applied and Environmental Microbiology, 2000, 66(3): 1126-1132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001776924
[52] Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences, 2002, 99(11): 7663-7668. doi: 10.1073/pnas.072210299
[53] Knittel K, Lösekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental microbiology, 2005, 71(1): 467-479. doi: 10.1128/AEM.71.1.467-479.2005
[54] Lösekann T, Knittel K, Nadalig T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea[J]. Applied and Environmental Microbiology, 2007, 73(10): 3348-3362. doi: 10.1128/AEM.00016-07
[55] Ganzert L, Schirmack J, Alawi M, et al. Methanosarcinaspelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(10): 3478-3484.
[56] Stadnitskaia A, Baas M, Ivanov M K, et al. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea[J]. Archaea, 2003, 1(3): 165-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004596024
[57] Comita P B, Gagosian R B, Pang H, et al. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcusjannaschii[J]. Journal of Biological Chemistry, 1984, 259(24): 15234-15241.
[58] Liu X L, Lipp J S, Schröder J M, et al. Isoprenoid glycerol dialkanoldiethers: a series of novel archaeal lipids in marine sediments[J]. Organic Geochemistry, 2012, 43: 50-55. doi: 10.1016/j.orggeochem.2011.11.002
[59] Knappy C S, Keely B J. Novel glycerol dialkanoltriols in sediments: transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates?[J]. Chemical Communications, 2012, 48(6): 841-843.
[60] Yang H, Pancost R D, Tang C, et al. Distributions of isoprenoid and branched glycerol dialkanoldiethers in Chinese surface soils and a loess-paleosol sequence: Implications for the degradation of tetraether lipids[J]. Organic Geochemistry, 2014, 66: 70-79. doi: 10.1016/j.orggeochem.2013.11.003
[61] Meador T B, Zhu C, Elling F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanoldiethers and indications for their biosynthetic origin[J]. Organic Geochemistry, 2014, 69: 70-75. doi: 10.1016/j.orggeochem.2014.02.005
[62] Rütters H, Sass H, Cypionka H, et al. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcinavariabilis and Desulforhabdusamnigenus[J]. Archives of Microbiology, 2001, 176(6): 435-442. doi: 10.1007/s002030100343
[63] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales[J]. Archives of Microbiology, 2007, 188(6): 629-641. doi: 10.1007/s00203-007-0284-z
[64] Sinninghe Damsté J S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. Febs Journal, 2005, 272(16): 4270-4283. doi: 10.1111/j.1742-4658.2005.04842.x
[65] Ring M W, Schwr G, Thiel V, et al. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacteriumMyxococcusxanthus[J]. Journal of Biological Chemistry, 2006, 281(48): 36691-36700. doi: 10.1074/jbc.M607616200
[66] Pancost R D, Bouloubassi I, Aloisi G, et al. Three series of non-isoprenoidaldialkyl glycerol diethers in cold-seep carbonate crusts[J]. Organic Geochemistry, 2001, 32(5): 695-707. doi: 10.1016/S0146-6380(01)00015-8
[67] Bradley A S, Fredricks H, Hinrichs K U, et al. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2009, 40(12): 1169-1178. doi: 10.1016/j.orggeochem.2009.09.004
[68] Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37(4): 484-500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=546aa6d56c171f980592e608061cf742
[69] Zeng Y B, Ward D M, Brassell S C, et al. Biogeochemistry of hot spring environments: 2. Lipid compositions of Yellowstone (Wyoming, USA) cyanobacterial and Chloroflexus mats[J]. Chemical Geology, 1992, 95(3/4): 327-345.
[70] Zeng Y B, Ward D M, Brassell S C, et al. Biogeochemistry of hot spring environments: 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat[J]. Chemical Geology, 1992, 95(3/4): 347-360.
[71] Baudrand M, Grossi V, Pancost R, et al. Non-isoprenoid macrocyclic glycerol diethers associated with authigenic carbonates[J]. Organic Geochemistry, 2010, 41(12): 1341-1344. doi: 10.1016/j.orggeochem.2010.09.002
[72] Méhay S, Früh-Green G L, Lang S Q, et al. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field[J]. Geobiology, 2013, 11(6): 570-592. doi: 10.1111/gbi.12062
[73] Guan H, Sun Y, Zhu X, et al. Factors controlling the types of microbial consortia in cold-seep environments: a molecular and isotopic investigation of authigenic carbonates from the South China Sea[J]. Chemical Geology, 2013, 354: 55-64. doi: 10.1016/j.chemgeo.2013.06.016
[74] Madigan M T, Martinko J M, Parker J. Brock Biology of Microorganisms, tenth ed[M]. Pearson Prentice Hall, Upper Saddle River, 2002.
[75] Niemann H, Lösekann T, De Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858. doi: 10.1038/nature05227
[76] Kroopnick P M. The distribution of 13C of ΣCO2 in the world oceans[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1985, 32(1): 57-84. doi: 10.1016/0198-0149(85)90017-2
[77] Ziegenbalg S B, Birgel D, Hoffmann-Sell L, et al. Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C-depleted molecular fossils[J]. Chemical Geology, 2012, 292: 140-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab765199f161c8dd94875b2214b880bc
[78] Naeher S, Niemann H, Peterse F, et al. Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland)[J]. Organic Geochemistry, 2014, 66: 174-181. doi: 10.1016/j.orggeochem.2013.11.002
[79] Hinrichs K U, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[M]//Ocean Margin Systems. Berlin Heidelberg: Springer, 2002: 457-477.
[80] Londry K L, Jahnke L L, Des Marais D J. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2004, 70(2): 745-751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000000801884
[81] Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9): 2287-2298. doi: 10.1111/j.1462-2920.2008.01653.x
[82] Schouten S, Hopmans E C, Sinninghe Damsté S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006
[83] Russell N J. Mechanisms of thermal adaptation in bacteria: blueprints for survival[J]. Trends in Biochemical Sciences, 1984, 9(3): 108-112.
[84] Kaur G, Mountain B W, Stott M B, et al. Temperature and pH control on lipid composition of silica sinters from diverse hot springs in the Taupo Volcanic Zone, New Zealand[J]. Extremophiles, 2015, 19(2): 327-344. doi: 10.1007/s00792-014-0719-9
[85] Sprott G D, Meloche M, Richards J C. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcusjannaschii grown at different temperatures[J]. Journal of Bacteriology, 1991, 173(12): 3907-3910. doi: 10.1128/JB.173.12.3907-3910.1991
[86] Uda I, Sugai A, Itoh Y H, et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature[J]. Lipids, 2001, 36(1): 103-105. doi: 10.1007/s11745-001-0914-2
[87] Kaneshiro S M, Clark D S. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii[J]. Journal of Bacteriology, 1995, 177(13): 3668-3672. doi: 10.1128/JB.177.13.3668-3672.1995
[88] DeLong E F, Yayanos A A. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes[J]. Applied and Environmental Microbiology, 1986, 51(4): 730-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001959399
[89] Wirsen C O, Jannasch H W, Wakeham S G, et al. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium[J]. Current Microbiology, 1986, 14(6): 319-322. doi: 10.1007/BF01568697
[90] Saito R, Oba M, Kaiho K, et al. Ether lipids from the Lower and Middle Triassic at Qingyan, Guizhou Province, Southern China[J]. Organic Geochemistry, 2013, 58: 27-42. doi: 10.1016/j.orggeochem.2013.02.002
[91] Turich C, Freeman K H. Archaeal lipids record paleosalinity in hypersaline systems[J]. Organic Geochemistry, 2011, 42(9): 1147-1157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d8ed0cbe126016c5c256efeeea04864
[92] Thiel V, Toporski J, Schumann G, et al. Analysis of archaeal core ether lipids using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS): Exploring a new prospect for the study of biomarkers in geobiology[J]. Geobiology, 2007, 5(1): 75-83.
[93] Blumenberg M, Seifert R, Nauhaus K, et al. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat[J]. Applied and environmental microbiology, 2005, 71(8): 4345-4351. doi: 10.1128/AEM.71.8.4345-4351.2005
[94] Friedrich M W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes[J]. Current Opinion in Biotechnology, 2006, 17(1): 59-66. doi: 10.1016/j.copbio.2005.12.003