极地天然气水合物资源利用前景

黄霞, 王平康, 庞守吉, 肖睿, 张帅, 祝有海. 极地天然气水合物资源利用前景[J]. 海洋地质前沿, 2017, 33(11): 18-27. doi: 10.16028/j.1009-2722.2017.11003
引用本文: 黄霞, 王平康, 庞守吉, 肖睿, 张帅, 祝有海. 极地天然气水合物资源利用前景[J]. 海洋地质前沿, 2017, 33(11): 18-27. doi: 10.16028/j.1009-2722.2017.11003
HUANG Xia, WANG Pingkang, PANG Shouji, XIAO Rui, ZHANG Shuai, ZHU Youhai. Future Utilization of Gas Hydrate Resources in Polar Regions[J]. Marine Geology Frontiers, 2017, 33(11): 18-27. doi: 10.16028/j.1009-2722.2017.11003
Citation: HUANG Xia, WANG Pingkang, PANG Shouji, XIAO Rui, ZHANG Shuai, ZHU Youhai. Future Utilization of Gas Hydrate Resources in Polar Regions[J]. Marine Geology Frontiers, 2017, 33(11): 18-27. doi: 10.16028/j.1009-2722.2017.11003

极地天然气水合物资源利用前景

  • 基金项目:
    国家自然科学基金(41202099)
详细信息
    作者简介: 黄霞(1982—),女,博士,副研究员,主要从事油气地质地球化学勘查研究工作.E-mail:huangxia@live.com
  • 中图分类号: P618.13

Future Utilization of Gas Hydrate Resources in Polar Regions

  • 极地天然气水合物资源潜力巨大,储层类型主要为富砂沉积物储层,最可能实现远景勘探和商业利用,是一种重要的战略能源。综述了天然气水合物在极地的分布情况、极地主要地区天然气水合物矿藏资源量以及水合物开发利用的资源金字塔。结合美国、加拿大和俄罗斯在北极冻土区天然气水合物勘探开发的案例进行了4种开采技术优缺点对比,并对极地区和非极地区5次天然气水合物试采效能进行对比评价。根据目前国际油气价格、能源结构、各国水合物研究目标和我国天然气水合物勘查开发现状等,提出了我国参与极地天然气水合物研究和开发的思路。

  • 加载中
  • 图 1  全球天然气水合物产地分布(据文献[5]修改)

    Figure 1. 

    图 2  全球天然气水合物中的天然气资源量评价(据文献[3, 43-50])

    Figure 2. 

    图 3  全球主要地区天然气水合物的天然气资源量分布(据文献[60])

    Figure 3. 

    图 4  天然气水合物资源金字塔(引自文献[61, 62])

    Figure 4. 

    图 5  天然气水合物开采方法示意图

    Figure 5. 

    表 1  极地主要地区天然气水合物矿藏资源量评估

    Table 1.  Gas hydrate resource estimate in the polar region

    地理位置 资源量(CH4)/m3 来源
    阿拉斯加北坡 (0.71~4.47)×1012 文献[1]
    北极群岛 (19~620)×1012 文献[58]
    麦索亚哈 0.062×1012 文献[58]
    普拉德霍湾Eileen地区 (1.0~1.2)×1012 文献[59]
    马更些-波弗特海 (1.0~10)×1012 文献[12, 54]
    南极近海 (0.97~1.63)×1013 文献[55]
    南设得兰陆缘 2.6×1012 文献[25]
    南极半岛陆缘 (1.6~2.8)×1010 文献[56]
    罗斯海 3.6×1011 文献[57]
    下载: 导出CSV

    表 2  四种水合物开采技术优缺点对比

    Table 2.  Comparison of four kinds of gas hydrate extraction technology

    开采技术 优点 缺点 试验区
    加热法 能有效控制水合物开采速度 1会造成大量热损失,效率很低,且要求向下注热和向上采气同步进行,开采成本昂贵
    2注入技术也限制了该方法的使用
    加拿大马更些三角洲Mallik地区
    降压法 无热量消耗和损失,不需要连续激发,成本较低,方法简便易行、无需增加设备,适用于大面积开采,尤其适用于存在下伏游离气层的水合物藏的开采,是目前最常用的方法 1不适用于储层原始温度接近或低于0 ℃的水合物矿藏
    2单一使用减压法开采天然气速度很慢
    前苏联麦索雅哈气田、加拿大Mallik气田和美国阿拉斯加气田
    注入抑制剂法 人为控制水合物矿层的分解速度 1化学试剂费用昂贵,开采速度缓慢,回采气体比较困难,还会带来一些环境污染问题
    2不适用于开采海洋天然气水合物矿藏
    前苏联麦索雅哈气田
    CO2置换开采法 能帮助减排工农业生产和日常生活中产生的CO2温室气体 投资高,目前正处于试验开采测试阶段 美国阿拉斯加
    下载: 导出CSV

    表 3  极地和非极地区天然气水合物试生产效能对比

    Table 3.  Comparison of gas hydrate pilot production efficiency in polar and non-polar regions

    试采地点 试采时间 试采方法 持续时间 平均日产量/m3 累计气量/m3
    极地 俄罗斯麦索亚哈 1969—2005年 降压法、化学抑制剂法 36 a(半连续生产) 525 000 6.9×109
    加拿大Mallik 2002年 加热法为主,降压法为辅 123.65 h 100 516
    2007年 降压法为主,加热法为辅 12.5 h 1 596 830
    2008年 降压法 139 h 2 245 13 000
    美国阿拉斯加 2012年 CO2置换法 14 d 2 143 30 000
    非极地 中国祁连山 2011年 降压法、加热法 101 h 22 95
    日本南海海槽 2013年 降压法 6 d 20 000 120 000
    下载: 导出CSV

    表 4  极地国家与非极地国家天然气水合物研究动机及焦点

    Table 4.  Research motive and focus of gas hydrate in polar countries and non polar countries

    国家 极地国家 非极地国家
    挪威 俄罗斯 加拿大 美国 中国 德国 印度 日本 韩国 英国
    国家研究计划
    研究动机
    能源供给安全
    环境/气候变化
    与其他项目合作
    研究焦点
    能源评估
    生产模型和试验
    风险评估
    气候变化影响
    天然气储运
    二氧化碳封存
    参与机构
    政府部门
    私人企业
    大学
    下载: 导出CSV
  • [1]

    Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 279-294. doi: 10.1016/j.marpetgeo.2009.12.001

    [2]

    Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56: 14-31. doi: 10.1016/j.petrol.2005.10.009

    [3]

    Kvenvolden K A.Methane hydrate—a major reservoir of carbon in the shallow geosphere[J]. Chemical Geology, 1988, 71: 41-51. doi: 10.1016/0009-2541(88)90104-0

    [4]

    Sloan E D. Clathrate Hydrates of Natural Gases (second edit)[M]. New York: Marcel Dekker Inc., 1998: 1-628.

    [5]

    Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates: A Review[C]//Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards: AAPG Memoir 89, 2009: 146-219.

    [6]

    Drachev S S, Malyshev N A, Nikishin A M. Tectonic History and Petroleum Geology of the Russian Arcticshelves: An Overview[C]//Vinnig B A, Pickering S C. Petroleum Geology: From Mature Basins to New Frontiers-Proceedings of the 7th Petroleum Geology Conference. London: London Geological Society, 2010: 591-619. Doi: 10.1144/0070591.

    [7]

    Collett T S, Dallimore S R. Permafrost-associated Gas Hydrate[M]//Max M D. Natural Gas Hydrate in Oceanic and Permafrost Environments: The Netherlands, Kluwer Academic Publishers, 2000: 43-60.

    [8]

    Collett T S. Energy resource potential of natural gas hydrates[C]. AAPG Bulletin, 2002, 86: 1971-1992.

    [9]

    Kvenvolden K A. A Primer on Gas Hydrates[M]//Howell D G. The Future of Energy Gases-U.S. Geological Survey Professional Paper 1570: Washington, United States Government Printing Office, 1993: 279-291.

    [10]

    Cherskiy N Ⅴ, Tsarev Ⅴ P, Nikitin S P. Investigation and prediction of conditions of accumulation of gas resources in gas-hydrate pools[J]. Petroleum Geology, 1985, 21: 65-89. http://cn.bing.com/academic/profile?id=0f2b807756c9e3aba70f4f6089456b6e&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    Judge A, Smith S L, Majorwicz J. The current distribution and thermal stability of natural gas hydrates in the Canadian Polar Regions[C]//Proceedings of the Fourth International Offshore and Polar Engineering Conference. Osaka, Japan, 1994: 307-313.

    [12]

    Osadetz K, Chen Z H. A re-examination of Beaufort Sea-Mackenzie Delta Basin gas hydrate resource potential using a petroleum system approach[C]//Proceedings of the Fifth International Conference on Gas Hydrate. Trondheim, Norway, 2005: 11.

    [13]

    Landvik J Y, Mangerud J, Salvigsen O. Glacial history and permafrost in the Svalbard Area[C]//Proceedings of the Fifth International Conference on Permafrost. Trondheim, Norway, 1988: 194-198.

    [14]

    Grantz A, Dinter D A. Constraints of geologic processes on western Beaufort Sea oil developments[J]. Oil and Gas Journal, 1980, 78: 304-319. https://link.springer.com/article/10.1007/BF01204390

    [15]

    Kvenvolden K A, Grantz A. Gas hydrates of the Arctic Ocean region[M]//The Geology of North America: The Arctic Ocean Region. Geological Society of America, 1990: 539-549.

    [16]

    Laberg J S, Andreassen K. Gas hydrate and free gas indications within the Cenozoic succession of the Bjrnya Basin, western Barents Sea[J]. Marine and Petroleum Geology, 1996, 13(8): 921-940. doi: 10.1016/S0264-8172(96)00038-4

    [17]

    Laberg J S, Andreassen K, Knutsen S M. Inferred gas hydrate on the Barents Sea Shelf-a model for its formation and a volume estimate[J]. Geo-Marine Letters, 1998, 18(1): 26-33. doi: 10.1007/s003670050048

    [18]

    Mienert J, Posewang J, Baumann M. Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane[R]//Henriet J P, Mienert J. Gas hydrates: Relevance to world margin stability and climate change. Geological Society. London: Special Publication, 1998, 137(1): 275-291.

    [19]

    Bugge T, Befring S, Belderson R H, et al. A giant three-stage submarine slide off Norway[J]. Geo-Marine Letters, 1987, 7(4): 191-198. doi: 10.1007/BF02242771

    [20]

    Соловьев В А. Газогидратоносность недр Мирового Океана[J]. Газовая промышленность, 2001, 12: 28-35.

    [21]

    高子英.南极洲地质矿产概况[J].云南地质, 2000, 19(3): 308-315. http://www.cnki.com.cn/Article/CJFDTotal-YNZD200003010.htm

    [22]

    Lodolo E, Camerlenghi A, Brancolini G. A bottom simulating reflector on the South Shetland margin, Antarctic Peninsula[J]. Antarctic Science, 1993, 5(2): 207-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0954102093000264

    [23]

    Tinivella U, Lodolo E, Camerlenghi A, et al. Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica)[R]//Henriet J P, Mienert J. Gas hydrate: relevance to world margin stability and climate change. Geological Society, London, Special Publications, 1998, 137(1): 141-151.

    [24]

    Lodolo E, Tinivella U, Pellis, et al. Seismic investigation of Bottom Simulating Reflectors on the South Shetland margin[J]. Terra Antarctica Report, 1998, 2: 71-74. https://www.cambridge.org/core/journals/antarctic-science/article/bottom-simulating-reflector-on-the-south-shetland-margin-antarctic-peninsula/F4AC933209450FD98C42845259FDBE0C

    [25]

    Lodolo E, Camerlenghi A, Madrussanic G, et al. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data[J]. Geophysical Journal International, 2002, 148(1): 103-119. doi: 10.1046/j.0956-540x.2001.01576.x

    [26]

    Tinivella U, Accaino F, Vedova B D. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula[J]. Geo-Marine Letters, 2008, 28(2): 97-106. doi: 10.1007/s00367-007-0093-z

    [27]

    Rebesco M, Larter R D, Barker P F, et al. The history of sedimentation on the continental rise west of the Antarctic Peninsula[R]//Barker P F, Cooper A K. Geology and Seismic Stratigraphy of the Antarctic Margin: Part 2 AGU, Antarctic Research Series, 1997, 71: 29-49.

    [28]

    Shipboard Scientific Party. Site 1096[R]//Barker P F, Camerlenghi A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Initial Reports. College Station, TX (Ocean Drilling Program), 1999: 178.

    [29]

    Shipboard Scientific Party. Palmer Deep (Sites 1098 and 1099)[R]//Barker P F, Camerlengh A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Initial Reports. College Station, TX (Ocean Drilling Program), 1999: 178.

    [30]

    McIver R D. Hydrocarbon gases in canned core samples from Leg 28 Sites 271, 272, and 273, Ross Sea[R]// Hayes D E, Frakes L A. Deep Sea Drilling Project, Initial Reports, Washington (U. S. Government Printing Office), 1975, 28: 815-817.

    [31]

    Shipboard Scientific Party. Sites 270, 271, 272[R]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project. Washington (U. S. Government Printing Office), 1975, 28: 211-334.

    [32]

    Mann R, Gieskes J M. Interstitial water studies, Leg 28[R]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project. Washington (U. S. Government Printing Office), 1975, 28: 805-814.

    [33]

    Geletti R, Praeg D, Busetti M. Evidence of gas hydrates and mud volcanoes in the western Ross Sea, Antarctica[Z]//33rd International Geological Congress, 2008.

    [34]

    Kvenvolden K A, Golan-Bac M, Rapp J B. Hydrocarbon geochemistry of sediments offshore from Antarctica: Wilkes Land continental margin[C]//Eittreim S L, Hampton M A. The Antarctic continental margin: Geology and Geophysics of Offshore Wilkes Land. Circum-Pacific Council for Energy and Mineral Resources, Earth Series. Houston, Texas, 1987: 5A: 205-213.

    [35]

    Ishihara T, Tanahashi M, Sato M, et al. Preliminary report of geophysical and geological surveys of the west Wilkes Land margin[C]//Proceedings of the NIPR Symposium on Antarctic Geosciences. 1996, 9: 91-108.

    [36]

    Close D Ⅰ, Stagg H M J, O'Brien P E. Seismic stratigraphy and sediment distribution on the Wilkes Land and Terre Adélie margins, East Antarctica[J]. Marine Geology, 2007, 239(1/2): 33-57. https://www.sciencedirect.com/science/article/pii/S027843430500097X

    [37]

    Shipboard Scientific Party. Sites 1165//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports. College Station TX (Ocean Drilling Program), 2001, 188: 1-191.

    [38]

    Claypool G E, Lorenson T D, Johnson C A. Authigenic carbonates, methane generation, and oxidation in continental rise and shelf sediments, ODP Leg 188 Sites 1165 and 1166, offshore Antarctic (Prydz Bay)[C]//Cooper A K, O' Brien P E, Richter C. Proceedings of the Ocean Drilling Program, Scientific Results. College Station TX (Ocean Drilling Program), 2004, 188: 1-15.

    [39]

    Kuvaas B, Kristoffersen Y, Leitchenkov G, et al. Seismic expression of glaciomarine depostis in the eastern Riiser Larsen Sea, Antarctica[J]. Marine Geology, 2004, 207(1-4): 1-15. https://www.sciencedirect.com/science/article/pii/S0025322704000878

    [40]

    Solli K, Kuvaas B, Kristoffersen Y, et al. A seismo-stratigraphic analysis of glaciomarine deposits in the eastern Riiser-Larsen Sea (Antarctica)[J]. Marine Geophysical Researches, 2007, 28(1): 43-57. doi: 10.1007/s11001-007-9013-x

    [41]

    Shipboard Scientific Party, Site 695[R]//Barker P E, Kennett J P, et al. Proceedings of the Ocean Drilling Program, Initial Reports. College Station, TX (Ocean Drilling Program). 1988, 113: 527-606.

    [42]

    Lonsdale M J. The relationship between silica diagenesis, methane, and seismic reflections on the South Orkney micro-continent[R]//Barker P E, Kennett J P, et al. Proceeding of the Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), 1990, 113: 27-37.

    [43]

    Meyer R F. Speculations on oil and gas resources in small fields and unconventional deposits[M]//Boston, Pitman. Long-term Energy Resources, 1981: 49-72.

    [44]

    McIver R D. Gas hydrate[M]//Boston, Pitman. Long-term energy resources, 1981: 713-726.

    [45]

    Trofimuk A A, Cherskiy N Ⅴ, Tsarev Ⅴ P. The role of continental glaciation and hydrate formation on petroleum occurrences[C]//Future supply of nature-made petroleum and gas: New York, Pergamon Press, 197: 919-926.

    [46]

    MacDonald G T. The future of methane as an energy resource[J]. Annual Review of Energy, 1990, 15: 53-83. doi: 10.1146/annurev.eg.15.110190.000413

    [47]

    Dobrynin V M, Yu P. Korotajev, Plyuschev D V. Gas hydrate-A possible energy resource[M]//Long-term energy resources: Boston, Pitman Publishers, 1981: 727-729.

    [48]

    Milkov A Ⅴ, Claypool G E, Lee Y J, et al. In situ methane concentrations at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory fromactive margins[J]: Geology, 2003, 31(10): 833-836. https://ui.adsabs.harvard.edu/abs/2003Geo....31..833M/abstract

    [49]

    Klauda J B, Sandler S Ⅰ. Global distribution of methane hydrate in ocean sediment[J]. Energy and Fuels, 2005, 19: 459-470. doi: 10.1021/ef049798o

    [50]

    Kvenvolden K A, Claypool G E. Gas hydrates in oceanic sediments[M]. U.S. Geological Survey Open-File Report, 88-216, 1988: 50.

    [51]

    Матвеева Т В, Черкащев Г А. Газогидраты Проблемы: изучения и освоения, Внииокеангеология[Z].http://www.rosnedra.gov.ru/data/Files/File/2569.pdf

    [52]

    赵荣.俄罗斯天然气水合物研究进展概述[J].青海师范大学学报:自然科学版, 2014(2): 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhsfdxxb-zrkx201402012

    [53]

    U.S. DOE. A strategy for Methane Hydrates Research & Developments[R]. U.S. Department of Energy, 1998: 34.

    [54]

    Majorowicz J A, Osadetz K G. Gas hydrate distribution and volume in Canada[C]. AAPG Bull, 2001, 85(7): 1211-1230.

    [55]

    王力峰, 邓希光, 沙志彬, 等.南极陆缘热流分布与天然气水合物资源量研究[J].极地研究, 2013, 25(3): 241-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jdyj201303005

    [56]

    Loreto M F, Tinivella U, Accaino F, et al. Offshore Antarctic Peninsula gas hydrate reservoir characterization by geophysical data analysis[J]. Energies, 2011, 4(1): 39-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000093336

    [57]

    王威, 高金耀, 沈中延, 等.罗斯海天然气水合物成藏条件及资源量评估[J].海洋学研究, 2015, 33(1): 16-24. doi: 10.3969/j.issn.1001-909X.2015.01.003

    [58]

    刘玉山, 吴必豪.大陆天然气水合物的资源开发与环境研究刍议[J].矿床地质, 2011, 30(4): 711-724. doi: 10.3969/j.issn.0258-7106.2011.04.010

    [59]

    Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska[J]. American Association of Petroleum Geologists Bulletin, 1993, 77(5): 793-812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WYeVF+p1DB0E8wWyeoMKBBwRXazIC7au9idufUpXJh0=

    [60]

    Walsh T P, Stokes P J, Singh P K. Characterization and quantification of the methane hydrate resource potential associated with the Barrow Gas Fields[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH), Vancouver, British Columbia, Canada, 2008.

    [61]

    Boswell, Collett T S. The Gas Hydrates Resource Pyramid[J]. U.S. DOE-NETL Fire in the Ice Newsletter, 2006, 6(3): 5-7. https://www.researchgate.net/publication/240442367_The_Gas_Hydrates_Resource_Pyramid

    [62]

    Boswell R, Kleinberg R, Collett T S, et al. Exploration priorities for marine gas hydrate resources[J]. U.S. DOE-NETL Fire in the Ice Newsletter, 2007, 7(2): 11-13. https://pubs.geoscienceworld.org/interpretation/article-abstract/4/1/SA13/75948/prospecting-for-marine-gas-hydrate-resources

    [63]

    Collett T, Agena W, Lee M, et al. Assessment of gas hydrate resources on the North Slope, Alaska[R]. U.S. Geological Survey Fact Sheet, 2008: 2008-3073.

    [64]

    陈志豪, 吴能友.国际多年冻土区天然气水合物勘探开发现状与启示[J].海洋地质动态, 2010, 26(11): 36-44. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201011009.htm

  • 加载中

(5)

(4)

计量
  • 文章访问数:  661
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2017-08-01
刊出日期:  2017-11-28

目录