THE THERMODYNAMICS OF MUD DIAPIR/VOLCANO FLUID AND ITS INFLUENCE ON GAS HYDRATE OCCURRENCE
-
摘要:
泥底辟/泥火山流体热效应对天然气水合物赋存的影响是探索泥底辟/泥火山发育区水合物赋存规律的关键问题。笔者在分析总结国外泥底辟/泥火山流体热异常及其对天然气水合物赋存之影响的基础上,重点探讨了我国南海北部陆坡珠江口盆地神狐海域SH5站位未钻获水合物的原因及泥底辟/泥火山流体热效应对天然气水合物赋存的影响。当初寄予厚望的位于泥底辟之上的SH5站位未成功钻遇水合物的原因是晚期泥底辟刺穿水合物稳定带使深部高温流体沿着泥底辟和断裂通道上侵,该过程致使水合物稳定带温度场升高进而导致早期形成的水合物发生分解,因此,泥底辟/泥火山的流体热效应会直接制约水合物的赋存。探索泥底辟/泥火山流体热效应及其对水合物成藏的影响,不仅为丰富和完善流体渗漏构造环境下天然气水合物成藏动力学研究与勘探提供了热力学理论依据,而且对天然气水合物勘探开发及资源潜力评价等具有重要的指导意义。
Abstract:The effect of mud diapir/mud volcano fluid on gas hydrate occurrence is a key problem to exploration of hydrate distribution in a mud diapir/mud volcano development zone. In this paper, we studied the thermodynamics of mud diapir/mud volcano fluid and its influence on gas hydrate occurrence, and the reason for giving up drilling of hydrate at the station SH5 of the Shenhu area of the Pearl River Mouth Basin in the northern South China Sea is discussed. The station of SH5 is located above a mud diapir.It seemed very hopeful in the beginning, but failed to collect hydrate samples successfully by drilling later on, since mud diapir piercing through the hydrate stability zone had made the deep thermal fluids migrating along the mud diapir and fracture channels.This process changed the temperature field of the hydrate stability zone and resulted in the decomposition of gas hydrates. Therefore, the mud diapir or mud volcano fluid thermal effect may directly influence the occurrence of hydrates. Exploring the movement of mud diapirs/mud volcanoes fluids and their thermal effects on hydrate accumulation will not only provide a theoretical basis for the research of gas hydrates accumulation dynamics under a fluid leakage tectonic environment, but also be important to gas hydrate exploration and development as well as resource assessment.
-
Key words:
- mud diapir/mud volcano /
- thermodynamics of fluid /
- gas hydrate /
- SH5 station
-
图 1 南海中建南盆地多波束测深系统揭示的海底泥火山形态(据文献[9]修改)
Figure 1.
图 2 新疆乌苏艾其沟泥火山野外考察照片(据文献[10]修改)
Figure 2.
图 3 贝加尔湖K2泥火山热流调查及水合物钻探结果(据文献[12]修改)
Figure 3.
图 4 从过Hakon Mosby泥火山中心浅层温度剖面图中得到的温度梯度数据图,剖面呈NNW—SSE向,从上往下分别为2003年ARK-XIX/3b、2005年AWI-ROV和2006年VICKING这3个航次得到的原位温度数据资料(据文献[6]修改)
Figure 4.
图 5 2003年ARK-XIX/3b航次运用重力取心测量得到的Hakon Mosby流体流速和温度数据。实线代表估算的垂向流体流速,虚线代表海底20 m深处的温度,GC2所在位置为泥火山几何中心(据文献[6]修改)
Figure 5.
图 7 过SH5站位地震剖面(据文献[25]修改)
Figure 7.
-
[1] Milkov A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4):183-197. http://cn.bing.com/academic/profile?id=977ccfa0f2ee590ea93694af4bc4d589&encoded=0&v=paper_preview&mkt=zh-cn
[2] 张洪涛, 张海启, 祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34(6):953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001
[3] 王力峰, 付少英, 梁金强, 等.全球主要国家水合物探采计划与研究进展[J].中国地质, 2017, 44 (3):439-448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201703003
[4] Clennell M B, Henry P, Hovland M, et al. Formation of natural gas hydrates in marine sediments:Gas hydrate growth and stability conditioned by host sediment properties[J]. Annals of the New York Academy of Sciences, 1999, 912(1):887-896. http://cn.bing.com/academic/profile?id=4b844a742a550097e734f8db6b9e78d9&encoded=0&v=paper_preview&mkt=zh-cn
[5] Dimitrov L I. Mud volcanoes:The most important pathway for degassing deeply buried sediments[J]. Earth-Science Reviews, 2002, 59(1/4):49-76. http://cn.bing.com/academic/profile?id=2e39302235ef8fc7bab2e55bfe390e38&encoded=0&v=paper_preview&mkt=zh-cn
[6] Feseker T, Dählmann A, Foucher J P, et al. In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea[J]. Marine Geology, 2009, 261(1/4):128-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6332ea2ae8b7c4899da5b3f499404313
[7] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167 (1/2):29-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2c562fbf427ede3af9e2a7c4aac347e
[8] 孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12):4052-4062. doi: 10.6038/cjg20141217
[9] Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea[J]. Geological Journal, 2018 (7):1-13.DOI:10.1002/gj.3168.
[10] Wan Z F, Wang X Q, Lu Y, et al. Geochemical characteristics of mud volcano fluids in the southern margin of the Junggar basin, NW China:implications for fluid origin and mud volcano formation mechanisms[J].International Geology Review, 2017, 59(6):1-13. http://cn.bing.com/academic/profile?id=b3b1623c9e36acc0f546dd6a4ae6b3fa&encoded=0&v=paper_preview&mkt=zh-cn
[11] Henry P, Le Pichon X, Lallemant S, et al. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge:Results from Manon cruise[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B9):20297-20323. doi: 10.1029/96JB00953
[12] Poort J, Khlystov O M, Naudts L, et al. Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal[J]. Geo-Marine Letters, 2012, 32(5/6):407-417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4f5c1c7cb5e2d347d4ff60465cf5a79
[13] Feseker T, Foucher J P, Harmegnies F. Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope[J]. Marine Geology, 2008, 247(3/4):194-207. http://www.sciencedirect.com/science/article/pii/S0025322707002277
[14] Kapitanov V A, Tyryshkin I S, Krivolutskii N P, et al. Spatial distribution of methane over Lake Baikal surface[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2007, 66(4/5):788-795. http://cn.bing.com/academic/profile?id=7789ec7855fe54fa08ce7f83b32bdf7f&encoded=0&v=paper_preview&mkt=zh-cn
[15] Crane K S E F, Ledouran S. Thermal evolution of the Western Svalbard Margin[J]. Marine Geophysical Research, 1988, 9(2):165-194. doi: 10.1007/BF00369247
[16] Eldholm O S E V, Nilsen A K G T. SW Barents Sea continental margin heat flow and Håkon Mosby Volcano[J]. Geo-Marine Letters, 1999, 19(1/2):29-37. doi: 10.1007/s003670050090
[17] Feseker T, Dählmann A, Foucher J P, et al. In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea[J]. Marine Geology, 2009, 261(1/4):128-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6332ea2ae8b7c4899da5b3f499404313
[18] Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes[J]. Earth & Planetary Science Letters, 2006, 248 (1/2):544-559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d47bb3d336bccbeb2b5174a7fdc2ce0
[19] De Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano[J]. Limnology & Oceanography, 2006, 51(3):1315-1331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4319/lo.2006.51.3.1315
[20] Ginsburg G D, Ivanov V L, Soloviev V A. Natural gas hydrates of the World's Oceans[C]//Oil and Gas Content of the World's Oceans. PGO Sevmorgeologia, 1984: 141-158.
[21] Ginsburg G D, Milkov A V, Soloviev V A, et al. Gas hydrate accumulation at the Hakon Mosby Mud Volcano[J]. Geo-Marine Letters, 1999, 19(1/2):57-67. http://link.springer.com/article/10.1007/s003670050093
[22] Brown K, Westbrook G K. Mud diapirism and subcretion in the Barbados Ridge Accretionary Complex:The role of fluids in accretionary processes[J]. Tectonics, 1988, 7(3):613. doi: 10.1029/TC007i003p00613
[23] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318(4):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab647482948e848eb254ec0452515a4
[24] 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
[25] Wan Z F, Xu X, Wang X Q, et al. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea:Influence of mud diapirs on hydrate occurrence[J]. Journal of Petroleum Science and Engineering, 2017, 158:424-432. doi: 10.1016/j.petrol.2017.08.053
[26] Dickens G R, Quinby-Hunt M S. Methane hydrate stability in seawater[J]. Geophysical Research Letters, 2013, 21(19):2115-2118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2014GL062135
[27] 徐行, 李亚敏, 罗贤虎, 等.南海北部陆坡水合物勘探区典型站位不同类型热流对比[J].地球物理学报, 2012, 55(3):998-1006. doi: 10.6038/j.issn.0001-5733.2012.03.030