Comparison of Suspended Sediment and Salinity Vertical Distributions Across the Turbidity Maximum Zoneinthe Yangtze Estuaryin Dry Seasons of 1982 and 2012
-
摘要:
2012年1月在长江口北港、北槽和南槽水域纵断面开展枯季多船准同步观测,将获得的大小潮悬浮泥沙和盐度数据与1982年12月同水域调查结果进行对比分析。结果表明:2012年长江口最大浑浊带枯季悬沙浓度比1982年减小了约50%;北港、北槽、南槽相近测点的大潮垂向平均悬沙浓度相较于1982年分别减小了43%、60%和40%,2012年长江口表层平均悬沙浓度与1982年相比减少了约53%。北港断面浑浊带核心与1982年浑浊带核心位置相近;北槽浑浊带核心向内迁移;南槽浑浊带核心位置向外迁移。2012年与1982年枯季遥感反演的长江口同水域表层悬浮泥沙浓度也明显降低。在30年来入海泥沙持续减少背景下,长江口3条入海主汊的最大浑浊带特征依旧显著,径流与潮流的此消彼长、径流的季节分配不同以及口内汊道分流分沙比的变化影响了长江口最大浑浊带核心的移动,浑浊带悬沙浓度最高的地段也是盐度梯度最高的地区。
Abstract:Ten ships, three in North Channel, three in North Passage and four in South Passage of the Yangtze Estuary, were employed to collect water samples in January 2012, in a pattern of three longitudinal profiles in the large estuary. The sampling sites are rather similar with those in 1982. Based on the comparison of suspended sediment concentrations (SSC) and salinity values across the turbidity maximum zone (TMZ) of the Yangtze Estuary acquired in 1982 and 2012 respectively, the change in TMZ in the vertical profiles was discussed in this paper. Results suggest that during the past 30 years from 1982 to 2012, even the sediment load coming from the river basin has been continuously reducing, the SSC of the TMZ decreased about 50%; and the average vertical SSC values in the North Channel, in the North Passage and in the South Passage decreased about 43%, 60%, and 40%, respectively. The 2012 SSC maximum of the turbidity zone in the North Channel was similar to that in 1982; the 2012 SSC maximum position in the North Passage migrated inward, and the coincidence of the SSC maximum and salinity maximum position in the turbidity zone may lead the increase in silt in the North Passage and the deposition in the middle section, while the highest SSC position in the South Passage moved outward. The change in runoff, tidal current and the seasonal distribution of runoff dominated the movement of core TMZ of the Estuary. During the dry season, the salinity gradient is obvious. On the section of the core of TMZ, the upper stream transported to the sea, and the lower stream transported to the estuary. The area with the highest SSC value is also the area with the highest salinity gradient.
-
表 1 卫星影像参数
Table 1. Parameters of Landsat series images used in this study
影像数据 过境时间 潮型 潮情 大通流量/(m3/s) 农历 枯季 Landsat TM 1982/01/23 大潮 涨急 11 800 腊月廿九 Landsat ETM 2012/01/23 大潮 涨急 11 600 正月初一 表 2 1982年与2012年长江口三条汊道测点垂线平均悬沙浓度
Table 2. Suspended sediment concentration values in the three channels of the Yangtze Estuary in 1982 and 2012
表层 中层 底层 1982 2012 1982 2012 1982 2012 北港 上段 0.31 0.22 1.12 0.32 2.03 0.35 中段 0.56 0.96 1.24 1.27 1.73 1.37 下段 0.35 0.32 1.43 0.48 1.98 0.50 北槽 上段 0.24 0.28 0.68 0.62 0.74 0.96 中段 0.47 2.14 4.53 下段 0.32 0.16 2.02 0.25 1.89 0.30 南槽 上段 0.21 0.13 0.39 0.56 0.87 0.33 中段 0.56 0.51 0.83 0.77 1.34 0.81 下段 0.41 0.39 1.97 0.55 2.76 0.64 -
[1] 沈焕庭, 贺松林, 潘定安, 等.长江河口最大浑浊带研究[J].地理学报, 1992(5):472-479. doi: 10.3321/j.issn:0375-5444.1992.05.011
[2] 沈焕庭, 朱慧芳, 茅志昌.长江河口环流及其对悬沙输移的影响[J].海洋与湖沼, 1986, 17(1): 26-35. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ198601003.htm
[3] 潘定安, 沈焕庭, 茅志昌.长江口浑浊带的形成机理与特点[J].海洋学报(中文版), 1999, 21(4):62-69. http://www.cqvip.com/Main/Detail.aspx?id=3581452
[4] 杨世伦, 李明.长江入海泥沙的变化趋势与上海滩涂资源的可持续利用[J].海洋学研究, 2009, 27(2): 7-15. doi: 10.3969/j.issn.1001-909X.2009.02.002
[5] 何超.近二十年长江口邻近海域悬沙分布比较研究[D].上海: 华东师范大学, 2007: 33-41.
http://cdmd.cnki.com.cn/article/cdmd-10269-2007081742.htm [6] 陆叶峰, 杨世伦, 刘建华, 等.长江口悬沙浓度时空变化研究——以2012年和2013年洪季为例[J].人民长江, 2015, 46(5):19-25. http://d.old.wanfangdata.com.cn/Periodical/rmcj201505004
[7] Shi Z, Ren L F, Lin H L. Vertical suspension profile in the Changjiang Estuary[J]. Marine Geology, 1996, 130(1/2):29-37. https://www.sciencedirect.com/science/article/abs/pii/0025322795013962
[8] 杨云平, 李义天, 孙昭华, 等.长江口最大浑浊带悬沙浓度变化趋势及成因[J].地理学报, 2013, 68(9): 1240-1250. http://d.old.wanfangdata.com.cn/Periodical/dlxb-e201401009
[9] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1/2):14-20. https://www.sciencedirect.com/science/article/pii/S0921818110002018
[10] 高抒, 程鹏, 汪亚平, 等.长江口外海域1998年夏季悬沙浓度特征[J].海洋通报, 1999, 18(6): 44-50. doi: 10.3969/j.issn.1001-6392.1999.06.007
[11] 万新宁, 李九发, 沈焕庭.长江口外海滨悬沙分布及扩散特征[J].地理研究, 2006, 25(2):294-302. doi: 10.3321/j.issn:1000-0585.2006.02.013
[12] Jiang X Z, Lu B, He Y H. Response of the turbidity maximum zone to fluctuations in sediment discharge from river to estuary in the Changjiang Estuary (China)[J]. Estuarine, Coastal and Shelf Science, 2013, 131:24-30. doi: 10.1016/j.ecss.2013.07.003
[13] 陈瑞瑞, 蒋雪中.长江河口悬浮泥沙向浙闽沿岸输运近期变化的遥感分析[J].海洋科学, 2017, 41(3):89-101. http://d.old.wanfangdata.com.cn/Periodical/hykx201703013
[14] 路兵.人类活动影响下长江河口变化的遥感研究[D].上海: 华东师范大学, 2012: 14-29.
http://cdmd.cnki.com.cn/Article/CDMD-10269-1012434339.htm [15] Dai Z J, Chu A, Li W H, et al. Has suspended sediment concentration near the mouth bar of the Yangtze (Changjiang) Estuary been declining in recent years?[J]. Journal of Coastal Research, 2013, 289(4):809-818. https://bioone.org/journals/journal-of-coastal-research/volume-29/issue-4/JCOASTRES-D-11-00200.1/Has-Suspended-Sediment-Concentration-Near-the-Mouth-Bar-of-the/10.2112/JCOASTRES-D-11-00200.1.short
[16] 杨孟毅.高浊度河口水体水上光谱测量误差分析[D].上海: 华东师范大学, 2018: 52-55.
https://www.ixueshu.com/document/994906362d7885dedd246e194cad86a2318947a18e7f9386.html [17] 时钟, 陈伟民.长江口北槽最大浑浊带泥沙过程[J].泥沙研究, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005
[18] 赵捷, 何青, 虞志英, 等.长江口北槽深水航道回淤泥沙来源分析[J].泥沙研究, 2014(5):18-24. http://d.old.wanfangdata.com.cn/Periodical/nsyj201405003
[19] 刘猛.长江口北槽深水航道回淤相关问题分析[J].水运工程, 2016(2):104-113. doi: 10.3969/j.issn.1002-4972.2016.02.019
[20] 沈焕庭, 李九发, 朱慧芳, 等.长江河口悬沙输移特性[J].泥沙研究, 1986(1):1-13. http://www.cnki.com.cn/Article/CJFD1986-NSYJ198601000.htm