Growth Process of Transtensional Faults andIts Contributionto Hydrocarbon Lateral Migration Across the Faults: A Casefrom Enping Sag of Pearl River Mouth Basin
-
摘要:
张扭性断裂带是珠江口盆地普遍发育的断裂类型,是沟通深部烃源岩与中浅部储层的关键,是油气运移、聚集分析的核心环节。以恩平凹陷E18雁列式断裂带为例,基于三维地震、测井和钻井地质数据,采用T-x图、T-z图及活动速率图方法,恢复E18断裂带的生长过程及分段特征,并依据岩性对接、泥岩涂抹、断层岩发育特征,评价油气穿断裂侧向运移的条件。结果表明,E18断裂带在裂陷期是单一断裂,裂后期表现为雁列形态,活动过程包含4个阶段,活动中心由西部转移至中部,大规模生排烃时期最大活动速率可达20 m/Ma,形成2个良好的垂向疏导中心,分段特征明显;油气容易穿透E18断裂带珠海组和韩江组下段2套地层发生侧向运移,并且连接部位是最有利于油气穿断运移的部位。E18断裂带生长过程和油气穿断侧向运移的评价有助于认识E18a油田和E18f油田的成藏过程。
Abstract:Transtensional faults, widely developed in the Pearl River Mouth Basin as links between the deep source rocks and shallow reservoirs, are the key to the analysis of hydrocarbon migration and accumulation. Using 3D seismic and drilling data, the growth process and fault transmissibility for the E18 transtensional fault system in the Enping Sag of the Pearl River Mouth Basin are studied in this paper. With Throw-x profiles, Throw-depth profiles, and fault slip-rate diagrams, the growth process of the E18 fault system in each period is restored for sectional activities of the echelon fault system. Evaluation of hydrocarbon lateral migration across the echelon fault system is also studied according to the characteristics of lithological juxtaposition, shale smearing, internal structure (fault cores), and column height. The results show that the E18 fault system was a single fault in rifting period, with a activity center in the western section. However, during post-rifting dextral strike-slip stage, it became dextral left-step in echelon, having an activity center in the central part. Then, two great vertical migration centers of the E18 fault system are determined, with the maximum activity rate up to 20 m/Ma, corresponding a massive hydrocarbon expulsion period (10 Ma-Now). Finally, it is concluded that the linking sections of the E18 fault system in the Zhuhai Formation and lower Hanjiang Formation are the favorable locations for hydrocarbon lateral migration across the fault surface. Accurate analysis of the E18 fault system would help to understand the formation of E18a and E18f oil fields.
-
图 2 E18断裂带浅层(1 500 ms)、深部(2 500 ms)相干地层切片及典型地震剖面(断裂位置见图 1)
Figure 2.
图 6 综合泥岩涂抹和断裂核发育特征的油气穿断裂面运移模式图(断裂位置见图 1)
Figure 6.
-
[1] 刘丽华, 陈胜红, 于水明, 等.恩平凹陷成藏条件分析及商业性突破[J].中国海上油气, 2011, 23(2): 76-80. doi: 10.3969/j.issn.1673-1506.2011.02.002
[2] 许新明, 刘贤来, 陈胜红, 等.张扭性断陷盆地构造样式与油气成藏的关系——以珠江口盆地恩平凹陷新生界为例[J].海洋地质前沿, 2015, 31(1):31-36, 42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201501005
[3] 米立军.认识创新推动南海东部海域油气勘探不断取得突破——南海东部海域近年主要勘探进展回顾[J].中国海上油气, 2018, 30(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201801001
[4] 邓运华.张—扭断裂与油气运移分析——以渤海油区为例[J].中国石油勘探, 2004, 9(2):33-37. doi: 10.3969/j.issn.1672-7703.2004.02.005
[5] 万桂梅, 汤良杰, 周心怀, 等.郯庐断裂带在渤海海域渤东地区的构造特征[J].石油学报, 2009, 30(3):342-346. doi: 10.3321/j.issn:0253-2697.2009.03.004
[6] 于水明, 施和生, 梅廉夫, 等.过渡动力学背景下的张扭性断陷——以珠江口盆地惠州凹陷古近纪断陷为例[J].石油实验地质, 2009, 31(5):485-489. doi: 10.3969/j.issn.1001-6112.2009.05.009
[7] 彭光荣, 刘从印, 吴建耀, 等.西江南半地堑晚期断裂系统基本特征及其控藏作用[J].科技导报, 2013, 31(2):30-36. http://d.old.wanfangdata.com.cn/Periodical/kjdb201302008
[8] Morley C K, Gabdi S, Seusutthiya K. Fault superimposition and linkage resulting from stress changes during rifting: examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 2007, 29(4):646-663. doi: 10.1016/j.jsg.2006.11.005
[9] 陈伟, 吴智平, 侯峰, 等.断裂带内部结构特征及其与油气运聚关系[J].石油学报, 2010, 31(5):774-780. http://d.old.wanfangdata.com.cn/Periodical/syxb201005012
[10] Tvedt A B M, Rotevatn A, Jackson C A L, et al. Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea[J]. Journal of Structural Geology, 2013, 55(5):1-20. https://www.sciencedirect.com/science/article/pii/S0191814113001363
[11] Fossen H, Rotevatn A. Fault linkage and relay structures in extensional settings—A review[J]. Earth-Science Reviews, 2016, 154:14-28. doi: 10.1016/j.earscirev.2015.11.014
[12] 付晓飞, 孙兵, 王海学, 等.断层分段生长定量表征及在油气成藏研究中的应用[J].中国矿业大学学报, 2015, 44(2):271-281. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201502011
[13] 薛永安.精细勘探背景下渤海油田勘探新思路与新进展[J].中国海上油气, 2017, 29(2):1-8. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201702001
[14] 许新明, 刘丽华, 陈胜红, 等.珠江口盆地恩平凹陷新近系油气成藏主控因素分析[J].地质科技情报, 2015, 34(1):100-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201501015
[15] 王家豪, 刘丽华, 陈胜红, 等.珠江口盆地恩平凹陷珠琼运动二幕的构造—沉积响应及区域构造意义[J].石油学报, 2011, 32(4):588-595. doi: 10.3969/j.issn.1001-8719.2011.04.015
[16] 许新明, 陈胜红, 王福国, 等.珠江口盆地恩平凹陷断层特征及其对新近系油气成藏的影响[J].现代地质, 2014, 28(3):543-550. doi: 10.3969/j.issn.1000-8527.2014.03.011
[17] 胡阳, 吴智平, 钟志洪, 等.珠一坳陷新生代断裂体系特征及其转型机制[J].地质科学, 2016, 51(2):494-509. http://d.old.wanfangdata.com.cn/Periodical/dzkx201602012
[18] Kim Y S, Sanderson D J. The relationship between displacement and length of faults: a review[J]. Earth-Science Reviews, 2005, 68(3/4):317-334. https://www.sciencedirect.com/science/article/abs/pii/S0012825204000856
[19] Walker C, Anderson G.Simple and efficient representation of faults and fault transmissibility in a reservoir simulator—Case study from the Mad Dog Field, Gulf of Mexico[C]//Gulf Coast Association of Geological Societies Transactions, 2016, 66: 1073.
http://www.gcags.org/exploreanddiscover/2016/00177_walker_and_anderson.pdf [20] 付晓飞, 许鹏, 魏长柱, 等.张性断裂带内部结构特征及油气运移和保存研究[J].地学前缘, 2012, 19(6):200-212. http://d.old.wanfangdata.com.cn/Periodical/dxqy201206024
[21] Allan U S. Model for hydrocarbon migration and entrapment: abstract[J]. AAPG Bulletin, 1986, 70(7):803-811. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201803014
[22] 任森林, 刘琳, 徐雷.断层封闭性研究方法[J].岩性油气藏, 2011, 23(5):101-105, 126. doi: 10.3969/j.issn.1673-8926.2011.05.021
[23] Yielding G, Freeman B, Needham D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6):897-917. http://d.old.wanfangdata.com.cn/Periodical/sywt200603008
[24] Fisher Q J, Knipe R J. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf[J]. Marine and Petroleum Geology, 2001, 18(10):1063-1081. doi: 10.1016/S0264-8172(01)00042-3