马克兰增生楔海陆泥火山气源成因

孟明, 龚建明, 廖晶. 马克兰增生楔海陆泥火山气源成因[J]. 海洋地质前沿, 2020, 36(5): 43-48. doi: 10.16028/j.1009-2722.2019.157
引用本文: 孟明, 龚建明, 廖晶. 马克兰增生楔海陆泥火山气源成因[J]. 海洋地质前沿, 2020, 36(5): 43-48. doi: 10.16028/j.1009-2722.2019.157
MENG Ming, GONG Jianming, LIAO Jing. DIFFERENCE IN GAS SOURCES FOR OFFSHORE AND ONSHORE MUD VOLCANOES IN MAKRAN ACCRETIONARY WEDGE[J]. Marine Geology Frontiers, 2020, 36(5): 43-48. doi: 10.16028/j.1009-2722.2019.157
Citation: MENG Ming, GONG Jianming, LIAO Jing. DIFFERENCE IN GAS SOURCES FOR OFFSHORE AND ONSHORE MUD VOLCANOES IN MAKRAN ACCRETIONARY WEDGE[J]. Marine Geology Frontiers, 2020, 36(5): 43-48. doi: 10.16028/j.1009-2722.2019.157

马克兰增生楔海陆泥火山气源成因

  • 基金项目:
    国家自然科学基金“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208);中国地质调查项目(DD2019058)
详细信息
    作者简介: 孟明(1995—),女,在读硕士,主要从事地球化学方面的研究工作.E-mail: mengming0809@163.com
    通讯作者: 龚建明(1964—),男,博士,研究员,主要从事海洋油气与水合物研究工作.E-mail:gongjianm@aliyun.com
  • 中图分类号: P618.13

DIFFERENCE IN GAS SOURCES FOR OFFSHORE AND ONSHORE MUD VOLCANOES IN MAKRAN ACCRETIONARY WEDGE

More Information
  • 为了探讨马克兰增生楔海陆泥火山气源成因及其差异,对取自陆上钱达戈普(Chandargup)泥火山口的5个水样进行了气体组分及其碳、氢同位素测试。结果显示,陆上泥火山中的气体组分主要为CH4和CO2,其CH4碳同位素平均值为-42‰,属热解成因气。对比分析马克兰增生楔海陆沉积地层、断裂分布、地温梯度、有机质含量等资料,认为海域与泥火山有关的生物成因气主要来自于浅表层的Hinglaj-Ormara组泥岩,而陆域热解成因气主要来自深部的Hoshab组页岩或者更深处泥页岩,推测马克兰增生楔陆域深部地层有一定的油气资源潜力。

  • 加载中
  • 图 1  马克兰增生楔大地构造位置、泥火山分布和采样区位置图(据文献[13, 15])

    Figure 1. 

    图 2  泥火山水样中CH4气体C、H同位素测试投点图

    Figure 2. 

    表 1  泥火山水样中气体组分及C、H同位素测试结果

    Table 1.  Gas content and C and H isotopes from water samples of mud volcano

    样品编号 CH4/% CO2/% CH4 /%
    相对含量
    CO2/%
    相对含量
    δ13C-CH4/ δD-CH4/‰ δ13C-CO2/‰
    1-1 * * * * * * -0.17
    1-2 0.06 0.30 17 83 * * -4.78
    1-3 0.57 0.29 66 34 -44.12 -289 -1.48
    1-4 0.20 0.23 47 53 -37.44 -249 -0.62
    1-5 0.12 0.34 26 74 -45.95 -264 -1.89
    下载: 导出CSV

    表 2  增生楔海域和陆域地层、岩性、地温梯度、TOC含量等分布

    Table 2.  The stratigraphic distribution of strata, lithology, geothermal gradient and TOC content in the onshore and offshore Makran accretionary wedge

    年代 海域地层 岩性 地层厚度/km 地温梯度/℃ TOC/%
    中新世以来层序Ⅰ和Ⅱ Hinglaj-Ormara组 泥岩 >2 25 >1(OMZ)
    Parkini组 粉砂质沉积
    渐新世-中中新世层序Ⅲ Panjgur组 上部砂、下部
    泥质沉积
    Hoshab组
    年代 陆域地层 岩性 地层厚度/km 地温梯度/℃ TOC/%
    上新世-更新世 Chitti/Ormara组 细粉砂岩 2-3 25
    上新世 Talar/Hinglaj组 浅灰色泥岩
    晚中新世 Parkini组 泥岩 1 0.64
    Panjgur组 砂岩 >2
    渐新世-中中新世 Hoshab组 页岩 0.54
    下载: 导出CSV
  • [1]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1):29-42. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0025-3227(00)00022-0/

    [2]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2):1-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2000RG000093

    [3]

    刘嘉麒.大地"沸腾"——泥火山[J].大自然探索, 2003, (8):8-9. http://www.cnki.com.cn/Article/CJFDTotal-DZRT200308002.htm

    [4]

    黄华谷, 邸鹏飞, 陈多福.泥火山的全球分布和研究进展[J].矿物岩石地球化学通报, 2011, 30(2):189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010

    [5]

    何家雄, 翁荣南, 祝有海, 等.台湾南部泥火山及伴生气地质地球化学特征及其油气地质意义[J].天然气地球科学, 2012, 23(2): 319-326. http://d.old.wanfangdata.com.cn/Conference/7863435

    [6]

    Sun C H, Chang S C, Kuo C L, et al. Origins of Taiwan's mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 2010, 37(2): 105-116. doi: 10.1016/j.jseaes.2009.02.007

    [7]

    Dimitrov L I. Mud volcanoes-The most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59(1-4):49-76. doi: 10.1016/S0012-8252(02)00069-7

    [8]

    Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8):997-1002. doi: 10.1007/s00254-004-1085-1

    [9]

    Etiope G, Feyzullayev A, Baciu C L. Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin [J]. Marine and Petroleum Geology, 2009, 26(3):333-344. doi: 10.1016/j.marpetgeo.2008.03.001

    [10]

    Shindell D T, Faluvegi G, Koch D M, et al. Improved Attribution of Climate Forcing to Emissions [J]. Science, 2009, 326(5953):716-718. doi: 10.1126/science.1174760

    [11]

    Demets C, Gordon R G, Argus D F. Geologically current plate motions [J]. Geophysical Journal International, 2011, 187(1): 1-80. doi: 10.1111/j.1365-246X.2011.05140.x

    [12]

    Smith G L. The structure, fluid distribution and earthquake potential of the Makran Subduction Zone, Pakistan [D].Southampton: University of Southampton, 2013.

    [13]

    龚建明, 廖晶, 张莉, 等.印度洋北部马克兰增生楔泥火山分布及主控因素探讨[J].现代地质, 2018, 32(5): 1025-1030. http://d.old.wanfangdata.com.cn/Periodical/xddz201805015

    [14]

    廖晶, 龚建明, 何拥军, 等.马克兰增生楔地层层序及发育过程[J].海洋地质前沿, 2019, 35(4): 69-72. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=e2d7e50d-5455-4540-86ac-b98f0a4b32fc

    [15]

    Delisle G, Rad U V, Andruleit H, et al. Active mud volcanoes on and offshore eastern Makran, Pakistan [J]. International Journal of Earth Sciences, 2002, 91(1):93-110. doi: 10.1007/s005310100203

    [16]

    Delisle G. The mud volcanoes of Pakistan [J]. Environmental Geology, 2004, 46(8):1024-1029. doi: 10.1007/s00254-004-1089-x

    [17]

    赵祖斌, 杨木壮, 沙志彬.天然气水合物气体成因及其来源[J].海洋地质前沿, 2001, 17(7):38-41. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=10E71387-E0CB-41C4-8971-C9516CA7D99A

    [18]

    Abbasi I A, Kakar D M, Khan M A, et al. Mud volcanoes in an active fore-arc setting: a case study from the makran coastal belt, SW Pakistan[M]//Tsunamis and Earthquakes in Coastal Environments. 2016.

    [19]

    Schlüter H U, Prexl A, Gaedicke C, et al. The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes [J]. Marine Geology, 2002, 185(3):219-232. https://www.sciencedirect.com/science/article/abs/pii/S0025322702001925

    [20]

    Rad U V, Schulz H, Khan A A, et al. Sampling the oxygen minimum zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results, sonne 90 cruise)[J]. 1995, 125(1/2): 7-19.

    [21]

    Rad U V, Berner U, Delisle G, et al. Gas and fluid venting at the Makran accretionary wedge off Pakistan[J]. Geo-Marine Letters, 2000, 20(1):10-19. doi: 10.1007/s003670000033

    [22]

    Smith G L, Mcneill L C, Henstock T J, et al. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran [J]. Earth and Planetary Science Letters, 2014, 403:131-143. doi: 10.1016/j.epsl.2014.06.030

    [23]

    Smith G L, Mcneill L C, Wang K, et al. Thermal structure and megathrust seismogenic potential of the Makran subduction zone [J]. Geophysical Research Letters, 2013, 40(8):1528-1533. doi: 10.1002/grl.50374

    [24]

    Harms J C, Chapel H N, Francis D C. The Makran coast of Pakistan: its stratigraphy andhydrocarbon potential[C]//Haq B U, Milliman J D. Marine geology and oceanography of Arabian Sea and Coastal Pakistan. Van Nostr and Reinhold, New York, 1984: 3-26.

    [25]

    Kazmi A H, Abbasi I A. Stratigraphy and historical geology of Pakistan [R]. Department and NCE in Geology, University of Peshawar, Pakistan, 2008: 551.

    [26]

    Etiope G, Feyzullayev A, Milkov A V, et al. Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes[J]. Marine and Petroleum Geology, 2009, 26(9):1692-1703. doi: 10.1016/j.marpetgeo.2008.12.002

    [27]

    Khan M A, Raza H A, Alam S. Petroleum geology of the Markran region: implications for hydrocarbon occurrence in cool basins [J]. Journal of Petroleum Geology, 2010, 14(1):5-18. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-5457.1991.tb00295.x#references-section

  • 加载中

(2)

(2)

计量
  • 文章访问数:  711
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2019-05-15
刊出日期:  2020-05-28

目录