西南印度洋中脊玄武岩地球化学特征及其对岩浆过程的指示意义

韩宗珠, 孙苑高, 王传, 孙晓霞, 刘明, 来志庆. 西南印度洋中脊玄武岩地球化学特征及其对岩浆过程的指示意义[J]. 海洋地质前沿, 2021, 37(1): 11-19. doi: 10.16028/j.1009-2722.2020.045
引用本文: 韩宗珠, 孙苑高, 王传, 孙晓霞, 刘明, 来志庆. 西南印度洋中脊玄武岩地球化学特征及其对岩浆过程的指示意义[J]. 海洋地质前沿, 2021, 37(1): 11-19. doi: 10.16028/j.1009-2722.2020.045
HAN Zongzhu, SUN Yuangao, WANG Chuan, SUN Xiaoxia, LIU Ming, LAI Zhiqing. GEOCHEMICAL CHARACTERISTICS OF THE MORBS OF THE SWIR AND THEIR IMPLICATIONS FOR MAGMATIC PROCESS[J]. Marine Geology Frontiers, 2021, 37(1): 11-19. doi: 10.16028/j.1009-2722.2020.045
Citation: HAN Zongzhu, SUN Yuangao, WANG Chuan, SUN Xiaoxia, LIU Ming, LAI Zhiqing. GEOCHEMICAL CHARACTERISTICS OF THE MORBS OF THE SWIR AND THEIR IMPLICATIONS FOR MAGMATIC PROCESS[J]. Marine Geology Frontiers, 2021, 37(1): 11-19. doi: 10.16028/j.1009-2722.2020.045

西南印度洋中脊玄武岩地球化学特征及其对岩浆过程的指示意义

  • 基金项目: 国家自然科学基金(41376053);山东省自然科学基金(ZR2017PD002)
详细信息
    作者简介: 韩宗珠(1964—),男,教授,主要从事岩石学和地球化学方面的研究工作. E-mail:hanzongzhu@ouc.edu.cn
  • 中图分类号: P736.4;P595

GEOCHEMICAL CHARACTERISTICS OF THE MORBS OF THE SWIR AND THEIR IMPLICATIONS FOR MAGMATIC PROCESS

  • 对采自西南印度洋中脊(SWIR)50°E附近5个站位的玄武岩样品进行了岩石学和元素地球化学研究。样品主量元素、TAS分类图解和AFM图解显示,SWIR研究区样品类型主要为低钾拉斑玄武岩。相对原始地幔SWIR区玄武岩具有Ba、Nb、Sr负异常,K表现为正异常。稀土元素分配模式均为左倾型,具有轻微的Eu、Ce正异常;SWIR区玄武岩都起源于上地幔,SWIR玄武岩则明显向EMⅡ端元偏移。SWIR玄武岩地幔源区相对最为富集,可能为DM和EMⅡ的混合源区,存在少量的陆壳成分。研究区玄武质岩浆起源深度为尖晶石橄榄岩区域处于中度还原环境下,经历了明显的橄榄石+单斜辉石+斜长石的分离结晶。

  • 加载中
  • 图 1  西南印度洋洋中脊岩石类型分布图[12]

    Figure 1. 

    图 2  SWIR研究区玄武岩代表性样品偏光镜下特征

    Figure 2. 

    图 3  SWIR研究区玄武岩TAS分类图

    Figure 3. 

    图 4  SWIR研究区玄武岩AFM图解

    Figure 4. 

    图 5  稀土元素球粒陨石标准化配分模式及微量元素原始地幔标准化蛛网图

    Figure 5. 

    图 6  SWIR研究区玄武岩Nb*-Ta*、εNd-87Sr/86Sr图解

    Figure 6. 

    图 7  SWIR玄武岩εNd-206Pb/204Pb、206Pb/204Pb -87Sr/86Sr、207Pb/204Pb-206Pb/204Pb图解

    Figure 7. 

    图 8  SWIR玄武岩(Tb/Yb)N-(La/Sm)N图解[29]

    Figure 8. 

    图 9  143Nd/144Nd-87Sr/86Sr图解[27]

    Figure 9. 

    图 10  SWIR玄武岩(La/Yb)N-(Dy/Yb)N和La/Yb-Yb图解

    Figure 10. 

    图 11  SWIR玄武岩CaO/Al2O3-Na8图解

    Figure 11. 

    表 1  SWIR研究区样品采样位置及采样方法

    Table 1.  Sample locations from SWIR and sampling methods

    样品编号经度纬度采样方式
    B01 50.42585°E 37.60980°S 电视抓斗
    B03 50.37599°E 37.552317°S
    B04 50.46777°E 37.67918°S
    B05 50.47244°E 37.67936°S
    S31 48.5802°E 38.13244°S
    下载: 导出CSV

    表 2  SWIR研究区玄武岩元素地球化学数据分析结果

    Table 2.  Element geochemistry of the basalt in the study area

    元素/指标B01B03B04B05S31
    主量元素/% SiO2 47.13 43.72 48.93 48.4 48.04
    TiO2 1.52 1.41 1.4 1.43 1.14
    Fe2O3 14.67 12.72 12.83 13.57 14.62
    MgO 8.36 5.96 7.76 8.63 10.98
    Al2O3 12.21 14.94 14.57 13.61 13.36
    Na2O 3.33 3.46 3.35 3.67 3.43
    CaO 10.77 12.48 11.13 11.29 10.65
    K2O 0.28 0.35 0.37 0.28 0.31
    MnO 0.21 0.45 0.19 0.21 0.37
    P2O5 0.15 0.22 0.15 0.17 0.13
    Total 98.63 95.71 100.68 101.26 103.03
    Mg# 53 48 55 56 60
    微量元素/10−6 Ba 14.4 21 25.07 26.95 17.1
    Cr 231.85 248.65 290.85 326.87 576.19
    Ni 89.14 95.99 114.65 117.82 220.23
    Sr 111.27 226.37 96.58 96.38 94.72
    V 431.92 426.03 393.05 411.36 346.54
    Nb 1.89 3.73 2.82 3.66 4.84
    Ta 0.13 0.12 0.15 0.15 0.16
    Hf 3.78 7.08 2.23 2.15 1.74
    Zr 89.67 78.96 78.6 74.9 57.4
    稀土元素/10−6 La 2.84 7.49 2.14 2.32 3.48
    Ce 8.77 27.6 7.22 7.42 14.6
    Pr 1.62 2.47 1.41 1.46 1.39
    Nd 8.9 12.24 8.12 8.28 7.35
    Sm 3.21 3.78 3.04 3.1 2.54
    Eu 1.22 1.36 1.16 1.17 0.98
    Gd 3.69 4.37 3.54 3.49 3.02
    Tb 0.81 0.91 0.78 0.78 0.65
    Dy 5.72 6.3 5.52 5.64 4.54
    Ho 1.29 1.41 1.25 1.27 1.02
    Er 3.57 3.92 3.52 3.57 2.83
    Tm 0.57 0.61 0.56 0.57 0.45
    Yb 3.54 3.89 3.6 3.67 2.91
    Lu 0.57 0.64 0.59 0.58 0.47
    ∑REE 46.31 76.99 42.45 43.32 46.22
    LREE/HREE 1.34 2.49 1.19 1.21 1.91
    LaN/YbN 0.54 1.3 0.4 0.43 0.81
    δEu 1.08 1.02 1.08 1.08 1.08
    δCe 0.97 1.54 0.97 0.94 1.6
    下载: 导出CSV

    表 3  SWIR研究区玄武岩Sr-Nd-Pb同位素分析结果

    Table 3.  The analysis results of Sr-Nd-Pb isotope on the SWIR

    同位素B04B05S31DMEMHIMUN-MORB
    208Pb/204Pb 38.282 1 38.529 4 38.746 3 37.2~37.4 38~38.2 37.891
    2SE 0.005 5 0.001 9 0.002
    207Pb/204Pb 15.563 2 15.623 6 15.649 8 15.4 15.46~15.49 15.485
    2SE 0.002 0.000 7 0.000 7
    206Pb/204Pb 18.327 2 18.377 6 18.706 1 17.2~17.7 17.6~17.7 >20.8 18.6
    2SE 0.002 2 0.000 7 0.000 8
    208Pb/206Pb 2.088 81 2.096 5 2.071 2
    2SE 0.000 07 0.000 05 0.000 04
    207Pb/206Pb 0.849 19 0.850 1 0.836 5
    2SE 0.000 02 0.000 01 0.000 01
    87Sr/86Sr 0.702 692 0.702 7 0.704 1 0.702~0.702 4 0.704 5~0.706 0.702 9 0.702 84
    ±2σ 14 15 12
    143Nd/144Nd 0.513 126 0.513 1 0.512 9 0.513 1~0.513 3 0.511 2 <0.512 8 0.513 13
    ±2σ 6 14 8
    εNd(t 9.519 388 9.285 3 5.715 5
    注:DM、EM、HIMU数据来自ZINDLER等[17]和WEAVER[18];N-MORB数据来自ITO和李彬贤[19]
    下载: 导出CSV

    表 4  SWIR玄武岩部分熔融程度

    Table 4.  The partial melting of the SWIR basalt

    /%
    采样位置样品号Na8Ca8Al8F
    SWIRB013.3910.5711.8915.45
    B033.0314.2916.7816.76
    B043.3111.2814.7913.95
    B053.7810.9813.0712.69
    S313.9510.6411.9712.57
    下载: 导出CSV
  • [1]

    徐夕生, 丘检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010: 185-186.

    [2]

    张国良. 东太平洋海隆13°N附近玄武岩特征及其对岩浆作用的指示意义[D]. 青岛: 中国科学院海洋研究所, 2010.

    [3]

    王妍. 中国东部苏北-合肥新生代大陆玄武岩地球化学研究[D]. 合肥: 中国科学技术大学, 2011.

    [4]

    PATRIAT P,SAUTER D,MUNSCHY M,et al. A survey of the southwest Indian ridge axis between Atlantis II fracture zone and the Indian ocean triple junction:regional setting and large scale segmentation[J]. Marine Geophysical Researches,1997,19(6):457-480. doi: 10.1023/A:1004312623534

    [5]

    MARKS K M,TIKKU A A. Cretaceous reconstructions of East Antarctica,Africa and Madagascar[J]. Earth and Planetary Science Letters,2001,186(3/4):479-495.

    [6]

    DICK H J B,LIN J,SCHOUTEN H. An ultraslow-spreading class of ocean ridge[J]. Nature,2003,426(6965):405-412. doi: 10.1038/nature02128

    [7]

    CHU D Z,GORDON R G. Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge[J]. Nature,1999,398(6722):64-67. doi: 10.1038/18014

    [8]

    SCLATER J G,FISHER R L,PATRIAT P,et al. Eocene to recent development of the South-west Indian Ridge,a consequence of the evolution of the Indian Ocean triple junction[J]. Geophysical Journal of the Royal Astronomical Society,1981,64(3):587-604. doi: 10.1111/j.1365-246X.1981.tb02686.x

    [9]

    DE RIBET B,PATRIAT P. The axial region of the Southwest Indian ridge between 53°E and 59°E:evolution during the last 10 Ma[J]. Marine Geophysical Researches,1988,10(3/4):139-156.

    [10]

    BAKER E T, GERMAN C R. On the global distribution of hydrothermal vent fields[M]//GERMAN C R, LIN J, PARSON L M. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Washington: American Geophysical Union, 2004: 245-266.

    [11]

    FONT L,MURTON B J,ROBERTS S,et al. Variations in melt productivity and melting conditions along SWIR (70°E–49°E):evidence from olivine-hosted and plagioclase-hosted melt inclusions[J]. Journal of Petrology,2007,48(8):1471-1494. doi: 10.1093/petrology/egm026

    [12]

    ZHOU H Y,DICK H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature,2013,494(7436):195-200. doi: 10.1038/nature11842

    [13]

    SEYLER M,BRUNELLI D,TOPLIS M J,et al. Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge(52°E-68°E):trace element compositions of along-axis dredged peridotites[J]. Geochemistry,Geophysics,Geosystems,2011,12(9):Q0AC15.

    [14]

    BACH W,BANERJEE N R,DICK H J B,et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E[J]. Geochemistry,Geophysics,Geosystems,2002,3(7):1044.

    [15]

    JANNEY P E,LE ROEX A P,CARLSON R W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E)[J]. Journal of Petrology,2005,46(12):2427-2464. doi: 10.1093/petrology/egi060

    [16]

    SUN S S,MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society,London,Special Publications,1989,42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [17]

    ZINDLER A,HART S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences,1986,14:493-571. doi: 10.1146/annurev.ea.14.050186.002425

    [18]

    WEAVER B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth and Planetary Science Letters,1991,104(1/4):381-397.

    [19]

    ITO E,李彬贤. 大洋中脊玄武岩氧、锶、钕、铅同位素地球化学[J]. 地质科学译丛,1988(3):54-64.

    [20]

    CANNAT M,SAUTER D,MENDEL V,et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology,2006,34(7):605-608. doi: 10.1130/G22486.1

    [21]

    HOFMANN A W. Chemical differentiation of the Earth:the relationship between mantle,continental crust,and oceanic crust[J]. Earth and Planetary Science Letters,1988,90(3):297-314. doi: 10.1016/0012-821X(88)90132-X

    [22]

    赵慧静. 东太平洋海隆13°N附近洋中脊玄武岩的研究[D]. 青岛: 中国科学院海洋研究所, 2013.

    [23]

    NIU Y L,COLLERSON K D,BATIZA R,et al. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes:the East Pacific Rise at 11°20′N[J]. Journal of Geophysical Research,1999,104(B4):7067-7087. doi: 10.1029/1998JB900037

    [24]

    WILSON M,DOWNES H. Tertiary-quaternary extension-related alkaline magmatism in western and central Europe[J]. Journal of Petrology,1991,32(4):811-849. doi: 10.1093/petrology/32.4.811

    [25]

    ZARTMAN R E. Lead, strontium, and neodymium isotopic characterization of mineral deposits relative to their geologic environments[C]//Proceedings of the 27th Int Geol CongrMoscow. Utrecht: VNUK Science Press, 1984: 83-106.

    [26]

    ALLÈGRE C L,LEWIN E,DUPRÉ B. A coherent crust-mantle model for the uranium-thorium-lead isotopic system[J]. Chemical Geology,1988,70(3):211-234. doi: 10.1016/0009-2541(88)90094-0

    [27]

    HAWKESWORTH C J,KEMPTON P D,ROGERS N W,et al. Continental mantle lithosphere,and shallow level enrichment processes in the Earth’s mantle[J]. Earth and Planetary Science Letters,1990,96(3/4):256-268.

    [28]

    KLEIN E M,LANGMUIR C H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness[J]. Journal of Geophysical Research,1987,92(B8):8089-8115. doi: 10.1029/JB092iB08p08089

    [29]

    WANG K,PLANK T,WALKER J D,et al. A mantle melting profile across the Basin and Range,SW USA[J]. Journal of Geophysical Research,2002,107(B1):2017.

    [30]

    SHAW J E,BAKER J A,MENZIES M A,et al. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan):a mixed lithosphere-asthenosphere source activated by lithospheric extension[J]. Journal of Petrology,2003,44(9):1657-1679. doi: 10.1093/petrology/egg052

    [31]

    NIU Y L,BATIZA R. In situ densities of Morb melts and residual mantle:implications for buoyancy forces beneath mid-ocean ridges[J]. The Journal of Geology,1991,99(5):767-775. doi: 10.1086/629538

    [32]

    NIU Y L,BATIZA R. DENSCAL:program for calculating densities of silicate melts and mantle minerals as a function of pressure,temperature,and composition in melting range[J]. Computers & Geosciences,1991,17(5):679-687.

    [33]

    NIU Y L,BATIZA R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges:application for axis and off-axis (seamounts) melting[J]. Journal of Geophysical Research,1991,96(B13):21753-21777. doi: 10.1029/91JB01933

    [34]

    NIU Y L,WAGGONER D G,SINTON J M,et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers:the East Pacific Rise,18°-19°S[J]. Journal of Geophysical Research,1996,101(B12):27711-27733. doi: 10.1029/96JB01923

    [35]

    于淼. 快、慢速扩张洋中脊玄武岩特征对比及意义[D]. 北京: 中国地质大学(北京), 2013.

    [36]

    LE ROEX A P,DICK H J B,FISHER R L. Petrology and geochemistry of MORB from 25°E to 46°E along the southwest Indian Ridge:evidence for contrasting styles of mantle enrichment[J]. Journal of Petrology,1989,30(4):947-986. doi: 10.1093/petrology/30.4.947

    [37]

    刘豇瑜. 内蒙古赤峰地区汉诺坝玄武岩岩石类型及其地球化学特征[D]. 成都: 西南石油大学, 2012.

    [38]

    PANDEY S K,PAL S,SHRIVASTAVA J P,et al. Trace elements geochemistry and petrogenesis of basalt from the southern part of the East Pacific Rise[J]. Journal of the Geological Society of India,2013,81(1):91-100. doi: 10.1007/s12594-013-0008-8

  • 加载中

(11)

(4)

计量
  • 文章访问数:  1221
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2020-05-06
刊出日期:  2021-01-31

目录