浅表层天然气水合物高分辨率地震勘探方法与应用

骆迪, 蔡峰, 闫桂京, 梁杰, 李清, 孙运宝, 董刚, 李昂. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9): 101-108. doi: 10.16028/j.1009-2722.2020.059
引用本文: 骆迪, 蔡峰, 闫桂京, 梁杰, 李清, 孙运宝, 董刚, 李昂. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9): 101-108. doi: 10.16028/j.1009-2722.2020.059
LUO Di, CAI Feng, YAN Guijing, LIANG Jie, LI Qing, SUN Yunbao, DONG Gang, LI Ang. HIGH RESOLUTION SEISMIC METHOD FOR SHALLOW GAS HYDRATES EXPLORATION[J]. Marine Geology Frontiers, 2020, 36(9): 101-108. doi: 10.16028/j.1009-2722.2020.059
Citation: LUO Di, CAI Feng, YAN Guijing, LIANG Jie, LI Qing, SUN Yunbao, DONG Gang, LI Ang. HIGH RESOLUTION SEISMIC METHOD FOR SHALLOW GAS HYDRATES EXPLORATION[J]. Marine Geology Frontiers, 2020, 36(9): 101-108. doi: 10.16028/j.1009-2722.2020.059

浅表层天然气水合物高分辨率地震勘探方法与应用

  • 基金项目: 国家重点研发计划(2018YFC0310001);国家自然科学基金(41506085)
详细信息
    作者简介: 骆 迪(1982—),女,博士,助理研究员,主要从事海洋综合地球物理及天然气水合物研究工作. E-mail: luodi0927@sina.com
    通讯作者: 蔡 峰(1965—),男,研究员,主要从事资源评价及油气地质研究工作. E-mail: caifeng0532@163.com
  • 中图分类号: P744;P631.4

HIGH RESOLUTION SEISMIC METHOD FOR SHALLOW GAS HYDRATES EXPLORATION

More Information
  • 浅表层天然气水合物资源勘查是天然气水合物资源勘查的重要组成部分,对深水地质灾害预测和评价、气候变化等都具有重要的指导意义。地震勘探是天然气水合物勘探的重要手段,但浅表层天然气水合物赋存于近海底沉积物中,埋深一般小于海底以下60 m,对地震浅层分辨率具有较高的要求,常规地震勘探方法难以满足以高频信号为主的浅表层天然气水合物勘探的需要。针对浅表层天然气水合物的特点,充分利用小道距高分辨率多道地震电火花震源气泡效应小、可重复性好,激发频率高、接收系统动态范围大等特点,结合参量阵浅地层剖面,形成了一套高分辨率地震勘探方法,提高了浅部地层的地震分辨率,满足了浅表层天然气水合物勘查对资料分辨率的要求。浅表层天然气水合物似海底反射(BSR)不明显,通常与海底甲烷渗漏密切相关,因此海底气体渗漏相关的地形地貌、气体运移通道、速度异常和振幅异常等特征是浅表层天然气水合物的重要识别标志。

  • 加载中
  • 图 1  气枪震源与电火花震源地震叠前时间偏移剖面对比

    Figure 1. 

    图 2  小道距高分辨率三维地震双源双缆采集系统示意图

    Figure 2. 

    图 3  TOPAS系统使用的3种波形(据文献[13])

    Figure 3. 

    图 4  几何平均属性横切片图

    Figure 4. 

    图 5  地震相图切片

    Figure 5. 

    图 6  天然气水合物地震识别流程图

    Figure 6. 

    图 7  浅表层天然气水合物赋存区参量阵高频浅地层剖面和多波束数据

    Figure 7. 

    图 8  扩散型天然气水合物地震剖面

    Figure 8. 

    图 9  扩散型天然气水合物高频衰减属性剖面

    Figure 9. 

  • [1]

    Ryo M, Yoshitaka K, Glen S, et al. Occurrence and origin of thick deposits of massive gas hydrate, eastern margin of the Sea of Japan[C]. America: 9th International Conference on Gas Hydrates, 2017.

    [2]

    刘 斌,李柯良,杨 力,等. 浅表层水合物多频率数据成像特征[J]. 海洋地质前沿,2019,35(7):54-61.

    [3]

    张光学,张 明,杨胜雄,等. 海洋天然气水合物地震检测技术及其应用[J]. 海洋地质与第四纪地质,2011,31(4):51-58.

    [4]

    骆 迪,蔡 峰,吴志强,等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报,2019,62(2):730-742. doi: 10.6038/cjg2019M0178

    [5]

    Le A N,Huuse M,Redfern J,et al. Seismic characterization of a Bottom Simulating Reflection (BSR) and plumbing system of the Cameroon margin,offshore West Africa[J]. Marine and Petroleum Geology,2014,67:1-19.

    [6]

    沙志彬,杨木壮,梁金强,等. BSR的反射波特征及其对天然气水合物识别的应用[J]. 南海地质研究,2003(1):55-61.

    [7]

    闫桂京. 小道距高分辨率三维地震探测新技术助力海域天然气水合物勘查[J]. 海洋地质前沿,2017,33(1):70.

    [8]

    褚宏宪,孙运宝,秦 轲,等. 小道距高分辨率多道地震对天然气水合物勘查的适用性[J]. 海洋地质前沿,2015,31(6):50-54.

    [9]

    邢 磊. 海洋小多道地震高精度探测关键技术研究[D]. 青岛: 中国海洋大学, 2012.

    [10]

    Luo D,Cai F,Wu Z Q. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology[J]. Journal of Ocean University of China,2017,16(3):370-382. doi: 10.1007/s11802-017-3145-7

    [11]

    单晨晨,邓希光,温明明,等. 参量阵浅地层剖面仪在海底羽状流探测中的应用−以ATLAS P70在马克兰海域调查为例[J]. 地球物理学进展,2020,35(3):1183-1190. doi: 10.6038/pg2020DD0148

    [12]

    祝鸿浩. 参量阵浅地层剖面技术研究[D]. 北京: 中国舰船研究院, 2015.

    [13]

    吴水根,周建平,顾春华,等. 全海洋浅地层剖面仪及其应用[J]. 海洋学研究,2007,25(2):91-96. doi: 10.3969/j.issn.1001-909X.2007.02.011

  • 加载中

(9)

计量
  • 文章访问数:  774
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2020-05-27
刊出日期:  2020-09-28

目录