含水合物沉积物孔隙结构特征与微观渗流模拟研究

张永超, 刘昌岭, 吴能友, 刘乐乐, 郝锡荦, 孟庆国, 李承峰, 孙建业, 王代刚. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿, 2020, 36(9): 23-33. doi: 10.16028/j.1009-2722.2020.060
引用本文: 张永超, 刘昌岭, 吴能友, 刘乐乐, 郝锡荦, 孟庆国, 李承峰, 孙建业, 王代刚. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿, 2020, 36(9): 23-33. doi: 10.16028/j.1009-2722.2020.060
ZHANG Yongchao, LIU Changling, WU Nengyou, LIU Lele, HAO Xiluo, MENG Qingguo, LI Chengfeng, SUN Jianye, WANG Daigang. ADVANCES IN THE PORE-STRUCTURE CHARACTERISTICS AND MICROSCOPIC SEEPAGE NUMERICAL SIMULATION OF THE HYDRATE-BEARING SEDIMENTS[J]. Marine Geology Frontiers, 2020, 36(9): 23-33. doi: 10.16028/j.1009-2722.2020.060
Citation: ZHANG Yongchao, LIU Changling, WU Nengyou, LIU Lele, HAO Xiluo, MENG Qingguo, LI Chengfeng, SUN Jianye, WANG Daigang. ADVANCES IN THE PORE-STRUCTURE CHARACTERISTICS AND MICROSCOPIC SEEPAGE NUMERICAL SIMULATION OF THE HYDRATE-BEARING SEDIMENTS[J]. Marine Geology Frontiers, 2020, 36(9): 23-33. doi: 10.16028/j.1009-2722.2020.060

含水合物沉积物孔隙结构特征与微观渗流模拟研究

  • 基金项目: 国家自然科学基金面上项目(41876051,41872136);山东省泰山学者特聘专家计划(ts201712079)
详细信息
    作者简介: 张永超(1989—),男,博士,主要从事天然气水合物模拟实验研究工作. E-mail: yongchao.zhang@hotmail.com
    通讯作者: 刘昌岭(1966—),男,博士,研究员,博士生导师,主要从事天然气水合物研究工作. E-mail: qdliuchangling@163.com
  • 中图分类号: P744;P618.13

ADVANCES IN THE PORE-STRUCTURE CHARACTERISTICS AND MICROSCOPIC SEEPAGE NUMERICAL SIMULATION OF THE HYDRATE-BEARING SEDIMENTS

More Information
  • 含水合物沉积物孔隙结构特征分析和微观渗流模拟是水合物研究的基础性、关键性工作,对深入理解沉积物中水合物的分解机理、储层渗流机理和开采机理有十分重要的意义。总结了国内外含水合物沉积物的微观孔隙探测方法,对比分析了多种微观探测技术应用在水合物研究中的技术特点;重点分析了计算机断层扫描(CT)、扫描电子显微镜(SEM)和核磁共振成像(MRI)技术在含水合物沉积物孔隙结构研究中的应用现状;简述了利用微观数值模拟方法进行含水合物沉积物渗流分析的研究进展;在此基础上,展望了含水合物沉积物孔隙特征分析和微观渗流模拟研究的未来方向和挑战。

  • 加载中
  • 图 1  常用形态学孔隙探测技术的测量尺度对比(据文献[16]修改)

    Figure 1. 

    图 2  水合物赋存形态划分示意图(据文献[29])

    Figure 2. 

    图 3  利用基于CT的数字岩心方法进行含水合物沉积物孔隙结构分析的一般流程

    Figure 3. 

    表 1  含水合物沉积物常用微观探测技术对比(据文献[14-15])

    Table 1.  Comparison of common microscopic detecting technology for hydrate-bearing sediments (after reference [14-15])

    探测方法 测量精度 主要用途 制样要求 技术特点
    X射线衍射分析
    (XRD)
    水合物晶体结构分析、晶体结构参数计算、生成/分解动力学监测等 粉末状样品,单晶样品 测量速度快
    激光拉曼
    (Raman)
    水合物类型划分、客体分子种类分析、生成/分解动力学监测等 无特殊要求 快速准确、精度高、可实时观测;在多组分水合物测定时会出现谱峰重合
    核磁共振谱
    (NMR)
    8 nm 水合物结构分析、化学组成分析、孔穴占有率计算等 厘米级样品,粉末状样品 精度高、探测尺度广;易受磁场屏蔽作用影响
    光学显微镜 0.3 µm 孔隙表面形态观测 厚度0.03 mm的薄片 图像直观、易操作
    扫描电子显微镜
    (SEM)
    6 nm 沉积物及水合物表面形态观测 厘米尺度样品,表面需喷金处理 分辨率高、探测尺度广;仅能提供二维图像
    场发射扫描电镜
    (FE-SEM)
    1 nm 无需喷金处理
    原子力显微镜 0.1 nm 孔隙表面形态观测 无特殊要求 图像分辨率高,可对纳米级孔隙成像;成像范围小、直观性较差
    X射线计算机断
    层扫描(CT)
    1 µm 水合物生成和分解过程中的沉积物组分空间结构分析 毫米级岩样或可封装样品 可三维成像、无损伤、交互性好;动态CT扫描精度略低、较难分辨水和水合物
    同步辐射X射线断层扫描成像
    (SRXCTM)
    0.35 µm X射线光源单色性好、三维成像、图像分辨率更高;仪器造价高
    核磁共振成像
    (MRI)
    0.05 mm 水合物生成/分解过程动态监测 厘米级样品 成像速度快、探测尺度广、易区分水和水合物;图像空间分辨率低
    DSC 水合物热力学分析和相平衡性质分析等 通常使用毫米级样品 样品用量少、控温精度高、温压控制范围大
    小角度散射
    (SANS/SAXS)
    0.5 nm 微-纳米孔隙分布探测、水合物生成过程中围绕在溶解甲烷分子的水分子结构分析等 厚度<0.5 mm的薄片,粉末状样品 无损伤、测试快速准确
    下载: 导出CSV
  • [1]

    吴能友,张海啟,杨胜雄,等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业,2007,27(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    [2]

    Trevor M L. Future energy: improved, sustainable and clean options for our planet[M] // Boswell R, Hancock S, Yamamoto K, et al. Natural gas hydrates: status of potential as an energy resource. Elsevier, 2020: 111-131.

    [3]

    Ruppel C D,Kessler J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics,2017,55(1):126-168. doi: 10.1002/2016RG000534

    [4]

    Li J F,Ye J L,Qin X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003

    [5]

    中国地质调查局. 我国海域天然气水合物试采再传捷报[EB/OL].[2020-03-26]. http://www.mnr.gov.cn/dt/ywbb/202003/t20200326_2503082.html.

    [6]

    Chong Z R,Yang S H B,Babu P,et al. Review of natural gas hydrates as an energy resource:Prospects and challenges[J]. Applied Energy,2016,162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [7]

    吴能友,黄 丽,胡高伟,等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质,2017,37(5):1-11.

    [8]

    Yin Z Y,Linga P. Methane hydrates:A future clean energy resource[J]. Chinese Journal of Chemical Engineering,2019,27(9):2026-2036. doi: 10.1016/j.cjche.2019.01.005

    [9]

    刘昌岭,李彦龙,孙建业,等. 天然气水合物试采:从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26.

    [10]

    Yang L,Liu Y L,Zhang H Q,et al. The status of exploitation techniques of natural gas hydrate[J]. Chinese Journal of Chemical Engineering,2019,27(9):2133-2147. doi: 10.1016/j.cjche.2019.02.028

    [11]

    刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展,2012,27(7):733-746.

    [12]

    颜荣涛,韦昌富,傅鑫晖,等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报,2013,32(S2):4115-4122.

    [13]

    Mahabadi N,Dai S,Seol Y,et al. Impact of hydrate saturation on water permeability in hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering,2019,174:696-703. doi: 10.1016/j.petrol.2018.11.084

    [14]

    Rojas Y,Lou X. Instrumental analysis of gas hydrates properties[J]. Asia-Pacific Journal of Chemical Engineering,2010,5(2):310-323. doi: 10.1002/apj.293

    [15]

    刘昌岭, 孟庆国. 天然气水合物实验测试技术[M]. 北京: 科学出版社, 2016.

    [16]

    赵 习,刘 波,郭荣涛,等. 储层表征技术及应用进展[J]. 石油实验地质,2017,39(2):287. doi: 10.11781/sysydz201702287

    [17]

    姚 军, 赵秀才. 数字岩心及孔隙级渗流模拟理论[M]. 北京: 石油工业出版社, 2010.

    [18]

    Kerkar P B,Horvat K,Jones K W,et al. Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography[J]. Geochemistry,Geophysics,Geosystems,2014,15(12):4759-4768.

    [19]

    Ta X H,Yun T S,Muhunthan B,et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry,Geophysics,Geosystems,2015,16(3):912-924.

    [20]

    Chaouachi M,Falenty A,Sell K,et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry,Geophysics,Geosystems,2015,16(6):1711-1722.

    [21]

    Chen X Y,Espinoza D N. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate[J]. Fuel,2018,214:614-622. doi: 10.1016/j.fuel.2017.11.065

    [22]

    胡高伟,李承峰,业渝光,等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报,2014,57(5):1675-1682. doi: 10.6038/cjg20140530

    [23]

    Li C F,Liu C L,Hu G W,et al. Investigation on the Multiparameter of Hydrate-Bearing Sands Using Nano-Focus X-Ray Computed Tomography[J]. Journal of Geophysical Research:Solid Earth,2019,124(3):2286-2296. doi: 10.1029/2018JB015849

    [24]

    Yang L,Falenty A,Chaouachi M,et al. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix[J]. Geochemistry,Geophysics,Geosystems,2016,17(9):3717-3732.

    [25]

    Jarrar Z A,Alshibli K A,Al-Raoush R I,et al. 3D measurements of hydrate surface area during hydrate dissociation in porous media using dynamic 3D imaging[J]. Fuel,2020,265:116978. doi: 10.1016/j.fuel.2019.116978

    [26]

    Stern L,Circone S,Kirby S,et al. Application of scanning electrons microscopy to investigate growth and annealing of gas clathrate hydrates formed from melting ice[J]. American Mineralogist,2004,89:1162-1175. doi: 10.2138/am-2004-8-902

    [27]

    孟庆国,刘昌岭,业渝光. 核磁共振成像原位监测冰融化及四氢呋喃水合物分解的微观过程[J]. 应用基础与工业科学学报,2012,20(1):11-20.

    [28]

    Cai J C, Hu X Y. Petrophysical characterization and fluids transport in unconventional reservoirs[M]. Amsterdam: Elsevier, 2019.

    [29]

    Waite W F,Santamarina J C,Cortes D D,et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics,2009,47(4):3-40.

    [30]

    Lei L,Seol Y,Choi J H,et al. Pore habit of methane hydrate and its evolution in sediment matrix–Laboratory visualization with phase-contrast micro-CT[J]. Marine and Petroleum Geology,2019,104:451-467. doi: 10.1016/j.marpetgeo.2019.04.004

    [31]

    王代刚,魏 伟,孙静静,等. 水合物降压分解过程中沉积物孔隙结构动态演化规律[J]. 科学通报,2020,65:1-1.

    [32]

    Yin Z Y,Chong Z R,Tan H K,et al. Review of gas hydrate dissociation kinetic models for energy recovery[J]. Journal of Natural Gas Science and Engineering,2016,35:1362-1387. doi: 10.1016/j.jngse.2016.04.050

    [33]

    Chen X Y,Espinoza D N. Surface area controls gas hydrate dissociation kinetics in porous media[J]. Fuel,2018,234:358-363. doi: 10.1016/j.fuel.2018.07.030

    [34]

    Zhang Z,Li C F,Ning F L,et al. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability[J]. Journal of Geophysical Research:Solid Earth,2020,125(3):e2019JB018721.

    [35]

    Liu L L,Zhang Z,Li C F,et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic,mechanical,and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Egineering,2020,75:103-109.

    [36]

    Stern L A,Lorenson T D,Pinkston J C. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):394-403. doi: 10.1016/j.marpetgeo.2009.08.003

    [37]

    Stern L A,Lorenson T D. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores[J]. Marine and Petroleum geology,2014,58:206-222. doi: 10.1016/j.marpetgeo.2014.07.027

    [38]

    Sun J Y,Li C F,Hao X L,et al. Study of the Surface Morphology of Gas Hydrate[J]. Journal of Ocean University of China:Oceanic and Coastal Sea Research,2020,19(2):1-8.

    [39]

    Kvamme B,Graue A,Aspenes E,et al. Kinetics of solid hydrate formation by carbon dioxide:Phase field theory of hydrate nucleation and magnetic resonance imaging[J]. Physical Chemistry Chemical Physics,2004,6(9):2327-2334. doi: 10.1039/B311202K

    [40]

    Moudrakovski I L,McLaurin G E,Ratcliffe C I,et al. Methane and carbon dioxide hydrate formation in water droplets:spatially resolved measurements from magnetic resonance microimaging[J]. The Journal of Physical Chemistry B,2004,108(45):17591-17595. doi: 10.1021/jp0473220

    [41]

    Ersland G,Husebø J,Graue A,et al. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography[J]. Chemical Engineering Journal,2010,158(1):25-31. doi: 10.1016/j.cej.2008.12.028

    [42]

    Cheng C X,Zhao J F,Song Y,et al. In-situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imaging[J]. Science China Earth Sciences,2013,56(4):611-617. doi: 10.1007/s11430-012-4570-5

    [43]

    Zhang L X,Zhao J F,Dong H S,et al. Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation[J]. Chemical Engineering Science,2016,144:135-143. doi: 10.1016/j.ces.2016.01.027

    [44]

    陈 芳,周 洋,苏 新,等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质,2011,31(5):95-100.

    [45]

    李承峰,胡高伟,张 巍,等. 有孔虫对南海神狐海域细粒沉积层中天然气水合物形成及赋存特征的影响[J]. 中国科学:地球科学,2016,46(9):1223-1230.

    [46]

    Delli M L,Grozic J L. Prediction performance of permeability models in gas-hydrate-bearing sands[J]. SPE Journal,2013,18(2):274-284. doi: 10.2118/149508-PA

    [47]

    Dai S,Seol Y. Water permeability in hydrate-bearing sediments:A pore-scale study[J]. Geophysical Research Letters,2014,41(12):4176-4184. doi: 10.1002/2014GL060535

    [48]

    蔡建超,夏宇轩,徐 赛,等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报,2020,52(1):208-223. doi: 10.6052/0459-1879-19-362

    [49]

    Blunt M J. Multiphase flow in permeable media: A pore-scale perspective[M]. Cambridge: Cambridge University Press, 2017.

    [50]

    Blunt M J,Bijeljic B,Dong H,et al. Pore-scale imaging and modelling[J]. Advances in Water Resources,2012,51:197-216.

    [51]

    Jang J,Santamarina J C. Recoverable gas from hydrate-bearing sediments:Pore network model simulation and macroscale analyses[J]. Journal of Geophysical Research:Solid Earth,2011,116(B8):202-214.

    [52]

    Mahabadi N,Dai S,Seol Y,et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments:pore-network model simulation[J]. Geochemistry,Geophysics,Geosystems,2016,17(8):3099-3110.

    [53]

    Wang J Q,Zhao J F,Yang M J,et al. Permeability of laboratory-formed porous media containing methane hydrate:observations using X-ray computed tomography and simulations with pore network models[J]. Fuel,2015,145:170-179. doi: 10.1016/j.fuel.2014.12.079

    [54]

    Wang J Q,Zhao J F,Zhang Y,et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel,2016,163:34-40. doi: 10.1016/j.fuel.2015.09.044

    [55]

    Wang D G,Wang C C,Li C F,et al. Effect of gas hydrate formation and decomposition on flow properties of fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. Fuel,2018,226:516-526. doi: 10.1016/j.fuel.2018.04.042

    [56]

    Tsimpanogiannis I N,Lichtner P C. Pore-network study of methane hydrate dissociation[J]. Physical Review E,2006,74(5):056303. doi: 10.1103/PhysRevE.74.056303

    [57]

    何雅玲, 王 勇, 李 庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.

    [58]

    Ansumali S,Karlin I V. Single relaxation time model for entropic lattice Boltzmann methods[J]. Physical Review E,2002,65(5):056312. doi: 10.1103/PhysRevE.65.056312

    [59]

    Tölke J. Lattice Boltzmann simulations of binary fluid flow through porous media[J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical,Physical Engineering Sciences,2002,360(1792):535-545. doi: 10.1098/rsta.2001.0944

    [60]

    Shan X W,Chen H D . Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E,1993,47(3):1815-1819. doi: 10.1103/PhysRevE.47.1815

    [61]

    Chen X Y,Verma R,Espinoza D N,et al. Pore-scale determination of gas relative permeability in hydrate-bearing sediments using X-ray computed micro-tomography and Lattice Boltzmann method[J]. Water Resources Research,2018,54(1):600-608. doi: 10.1002/2017WR021851

    [62]

    Kang D H,Yun T S,Kim K Y,et al. Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media[J]. Geophysical Research Letters,2016,43(17):9018-9025. doi: 10.1002/2016GL070511

    [63]

    Hou J,Ji Y K,Zhou K,et al. Effect of hydrate on permeability in porous media:Pore-scale micro-simulation[J]. International Journal of Heat and Mass Transfer,2018,126:416-424. doi: 10.1016/j.ijheatmasstransfer.2018.05.156

    [64]

    Kumar A,Maini B,Bishnoi P,et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of Petroleum Science and Engineering,2010,70(1/2):114-122.

    [65]

    Misyura S Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[J]. Scientific Reports,2016,6:30324. doi: 10.1038/srep30324

    [66]

    Sun X,Luo H,Soga K J. A coupled thermal–hydraulic–mechanical–chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics[J]. Journal of Zhejiang University-Science A,2018,19(8):600-623.

    [67]

    Fu X J,Cueto-Felgueroso L,Juanes R. Nonequilibrium thermodynamics of hydrate growth on a gas-liquid interface[J]. Physical Review Letters,2018,120(14):144501. doi: 10.1103/PhysRevLett.120.144501

    [68]

    Mohammadmoradi P,Kantzas A. Direct geometrical simulation of pore space evolution through hydrate dissociation in methane hydrate reservoirs[J]. Marine and Petroleum Geology,2018,89:786-798. doi: 10.1016/j.marpetgeo.2017.11.016

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1484
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2020-05-27
刊出日期:  2020-09-28

目录