北方沿海风电工程多桩承台混凝土冻融环境下的耐久性研究

贾彦兵. 北方沿海风电工程多桩承台混凝土冻融环境下的耐久性研究[J]. 海洋地质前沿, 2020, 36(12): 78-84. doi: 10.16028/j.1009-2722.2020.130
引用本文: 贾彦兵. 北方沿海风电工程多桩承台混凝土冻融环境下的耐久性研究[J]. 海洋地质前沿, 2020, 36(12): 78-84. doi: 10.16028/j.1009-2722.2020.130
JIA Yanbing. RESEARCH ON CONCRETE DURABILITY OF MULTI-PILE CAP IN WIND POWER PROJECTS UNDER A FREEZE-THAW ENVIRONMENT IN THE COAST OF NORTH CHINA[J]. Marine Geology Frontiers, 2020, 36(12): 78-84. doi: 10.16028/j.1009-2722.2020.130
Citation: JIA Yanbing. RESEARCH ON CONCRETE DURABILITY OF MULTI-PILE CAP IN WIND POWER PROJECTS UNDER A FREEZE-THAW ENVIRONMENT IN THE COAST OF NORTH CHINA[J]. Marine Geology Frontiers, 2020, 36(12): 78-84. doi: 10.16028/j.1009-2722.2020.130

北方沿海风电工程多桩承台混凝土冻融环境下的耐久性研究

详细信息
    作者简介: 贾彦兵(1967—),男,硕士,高级工程师,主要从事工程管理工作. E-mail:wm17wm@163.com
  • 中图分类号: TU528; TU37

RESEARCH ON CONCRETE DURABILITY OF MULTI-PILE CAP IN WIND POWER PROJECTS UNDER A FREEZE-THAW ENVIRONMENT IN THE COAST OF NORTH CHINA

  • 针对我国北方浅海地区风电工程多桩承台所耐受环境,通过模拟海洋工况,如冻融循环、氯盐溶液浸泡,并在此模拟环境作用基础上进行抗压强度试验和抗折强度试验,再结合钢筋粘结的拔出试验,探讨不同混凝土强度等级在氯盐侵蚀的情况下,分别进行不同次数的冻融循环,来对比分析各种工况对混凝土物理性能的影响。运用超声波探测技术有效地解释混凝土在冻融循环和氯离子复合作用下强度降低的劣化机理。最后,利用有限元数值模拟多桩承台的作业环境,再一次验证了冻融循环对风机承台混凝土结构的影响规律。此研究可为北方海域冻融环境较为恶劣区域的风电项目建设提供有益参考。

  • 加载中
  • 图 1  试件在氯化钠溶液中冻融时间-距离关系

    Figure 1. 

    图 2  试件损伤层深度-冻融循环关系

    Figure 2. 

    图 3  抗压强度-冻融循环曲线

    Figure 3. 

    图 4  抗折强度-冻融循环曲线

    Figure 4. 

    图 5  弹性模量-冻融循环曲线

    Figure 5. 

    图 6  破坏荷载-冻融循环曲线

    Figure 6. 

    图 7  平均粘结强度-冻融循环曲线

    Figure 7. 

    图 8  平均峰值位移-冻融循环曲线

    Figure 8. 

    图 9  劣化系数-冻融循环曲线

    Figure 9. 

    图 10  混凝土承台有限元模型

    Figure 10. 

    图 11  最大压应力-冻融循环次数曲线

    Figure 11. 

    图 12  最大变形-冻融循环次数曲线

    Figure 12. 

    表 1  混凝土配合比

    Table 1.  Concrete mixture design

    /kg·m−3
    编号水泥砂子粗骨料减水剂引气剂
    C3035514975911873.553.55
    C4042715071211615.134.27
    C5047815369111285.744.78
    下载: 导出CSV

    表 2  计算应力分析

    Table 2.  Analysis of calculation stress

    混凝土强度冻融循环/次模拟计算最大压应力/MPa试验强度值/MPa
    C30016.833.9
    15018.129.2
    20018.625.8
    25019.721.6
    30021.318.1
    35023.215.6
    40024.913.2
    C40016.844.7
    15017.640.1
    20018.637.3
    25019.833.2
    30021.429.6
    35022.126.4
    40022.724.2
    C50016.854.6
    15017.551.3
    20018.248.8
    25018.945.7
    30019.742.6
    35020.140.1
    40020.638.3
    下载: 导出CSV
  • [1]

    河北省质量技术监督局. DB13/T 2245—2015 环渤海耐氯盐水工混凝土技术规范[S]. 北京: 中国水利水电出版社.

    [2]

    郑晓宁,刁波,孙洋,等. 混合侵蚀与冻融循环作用下混凝土力学性能劣化机理研究[J]. 建筑材料学报,2010,31(2):111-116.

    [3]

    李金玉, 曹建国. 水工混凝土耐久性的研究与应用[M]. 北京: 中国电力出版社, 2004: 2-3.

    [4]

    中华人民共和国住房和城乡建设部. GB/T 50082—2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社.

    [5]

    李平先,赵国藩,张雷顺. 受冻融损伤混凝土与新混凝土的粘结剪切性能试验研究[J]. 建筑结构学报,2004,25(5):111-117. doi: 10.3321/j.issn:1000-6869.2004.05.018

    [6]

    中华人民共和国住房和城乡建设部. GB/T 50152—2012, 混凝土结构试验方法标准[S]. 北京: 中国建筑工业出版社.

    [7]

    胡强圣,张平. 冻融后预应力混凝土构件受弯性能有限元模拟[J]. 齐齐哈尔大学学报(自然科学版),2020,36(2):48-51.

    [8]

    王伟, 杨敏. 海上风电机组地基基础设计理论与工程应用[M]. 北京: 中国建筑工业出版社, 2014: 105-107.

    [9]

    何岩松,王健飞,赵怀宇. 海上风机荷载计算及组合研究[J]. 建筑结构,2012,42(增刊2):412-416.

    [10]

    施士升. 冻融循环对混凝土力学性能的影响[J]. 土木工程学报,1997,30(4):35-42. doi: 10.3321/j.issn:1000-131X.1997.04.005

    [11]

    邹超英,赵娟,梁锋. 冻融环境下混凝土应力—应变关系的试验研究[J]. 哈尔滨工业大学学报,2007,39(2):229-231. doi: 10.3321/j.issn:0367-6234.2007.02.014

    [12]

    殷英症,李志国. 我国代表城市混凝土冻融循环次数探讨[J]. 低温建筑技术,2015(11):12-14.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  534
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2020-09-16
刊出日期:  2020-12-31

目录