GEOCHEMICAL BEHAVIORS AND CHARACTERISTICS OF IRON ISOTOPE IN THE FERROAN DOLOMITE FROM WELL XIYONG 2
-
摘要:
白云岩发现于200多年前,至今仍然是地球科学研究前沿。西沙群岛白云岩研究超过35 a,发现铁白云岩10 a,属于研究热点。本文在西永2井前期铁白云岩测试研究基础之上,采集典型铁白云岩岩心样品,完成Fe同位素测试,通过对比多种地质储库Fe同位素特征,阐述定位该批测试数据的性质、特征和分析其母源,提出加强投入,与高尖石岛火山岩铁同位素测试结果地球化学特征朔源对比分析的建议。该项研究对于铁白云岩成因特征和机制研究具有重要价值。
Abstract:The dolomite was discovered more than 200 years ago, and its research is still one of the frontier subjects in Earth Sciences. The study of dolomite on Xisha Islands is over 35 a, and ferroan dolomite was found for 10 a, which are the research hotspots. On the basis of earlier study of dolomites in well Xiyong 2, the core samples of typical ferroan dolomite are further collected for Fe isotope analysis in this study. By comparing characteristics of Fe isotope of various geological reservoirs, the properties, characteristics and the parent sources of the Fe isotope of dolomites from well Xiyong 2 are elaborated. It is suggested to strengthen the investment and correlate the geochemical characteristics with the Fe isotope test results of the volcanic rock samples from the Gajianshi Island. This study is of great value for the study of the genetic characteristics and mechanism of ferroan dolomite.
-
表 1 影响Fe同位素的潜在干扰信号
Table 1. Potential interference signals affecting Fe isotope results
同位素 质量数 天然丰度/% 干扰元素 54Fe 53.939 61 5.84 54Cr、[27Al27Al]+、[37Cl16OH]+、[40Ca12C]+、[40Ca14N]+、[40Ar14N]+ 55Fe 55.934 94 91.76 [28Si28Si]+、[40Ca14N]+、[40Ar16O]+ 56Fe 56.935 4 2.12 [40Ar17OH]+、[40Ar17O]+ 57Fe 57.933 28 0.28 58Ni、[40Ar18O]+ -
[1] CHILINGAR G V,YEN T F. Concepts and models of dolomitization[J]. Earth-Science Reviews,1981,17(3):285-286.
[2] WARREN J. Dolomite:occurrence,evolution and economically important associations[J]. Earth-Science Reviews,2000,52(1/3):1-81.
[3] ZENGER D H, DUNHAM J B, ETHINGTON R L. Concepts and models of dolomitization[M]. Tulsa: SEPM Special Publication, 1980, 28: 1-328.
[4] 许红,王修齐,张健,等. 四川盆地震旦系勘探突破与绵阳-长宁拉张槽的特征及对于下扬子区的意义[J]. 海洋地质前沿,2016,32(3):1-6.
[5] 王修齐,许红,宋家荣,等. 高石梯-龙王庙大气田发现与四川盆地震旦-寒武系油气地质特征及成藏[J]. 海洋地质前沿,2016,32(3):24-32.
[6] 许红. 地球化学系统科学Mg-Fe同位素研究: 实验岩石学与白云岩-铁白云岩中Mg-Fe同位素的地球化学行为分析与实践[C]//第七届全国稳定同位素制备与应用技术交流会, 上海, 2020.
[7] XU H,ZHANG W W,WEI K,et al. Ferroan dolomites in Miocene sediments of the Xisha Islands and their genetic model[J]. Chinese Journal of Oceanology and Limnology,2018,36(1):165-180. doi: 10.1007/s00343-018-7136-3
[8] 于吉顺, 雷新荣, 张锦化, 等. 矿物 X 射线粉晶鉴定手册(图谱)上册[M]. 武汉: 华中科技大学出版社, 2011.
[9] 许红. “十二五”大型油气田和煤成气重大科技专项《南海新生代生物礁储层对比研究》成果报告[R]. 青岛: 青岛海洋地质研究所, 2015.
[10] 王国忠. 南海珊瑚礁区沉积学[M]. 北京: 海洋出版社, 2001.
[11] 朱祥坤,李志红,赵铁苗,等. 铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志,2008,27(4):263-272. doi: 10.3969/j.issn.1000-6524.2008.04.001
[12] ZHU X K,MAKISHIMA A,GUO Y,et al. High precision measure-ment of titanium isotope ratios by plasma source mass spectrometry[J]. Intenational Journal of Mass Spectrometry,2002,220:321-329.
[13] 唐索寒,朱祥坤,蔡俊军,等. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J]. 岩矿测试,2006,25(1):5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002
[14] ZHU X K,O′NIONS K R,GUO Y L,et al. Secular variation of iron isotopes in north Atlantic Deep Water[J]. Science,2000,287:2000-2002. doi: 10.1126/science.287.5460.2000
[15] 朱祥坤,王跃,闫斌,等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报,2013,32(6):651-688.
[16] BLANCKENBURG F V,MAMBERTI M,SCHOENBERG R,et al. The iron isotope composition of microbial carbonate[J]. Chemical Geology,2008,249(1/2):113-128.
[17] 李志红,朱祥坤,唐索寒. 鞍山-本溪地区条带状铁矿的BIF铁同位素特征及其对成矿机理和地球早期海洋环境的制约[J]. 岩石学报,2012,28(11):3545-3558.
[18] BEARD B L,JOLINSON C M,VON-DAMM K V,et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology,2003,31:629-632. doi: 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2
[19] POITRASSON F,HALLIDAY A N,LEE D C,et al. Iron isotope differences between Earth,Moon,Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Eath and Planetary Science Letters,2004,223(3/4):253-266.
[20] JOHNSON C M,BEARD B L,BEUKES N J,et al. Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton[J]. Contributions to Mineralogy and Petrology,2003,144(5):523-547. doi: 10.1007/s00410-002-0418-x
[21] MATTHEWS A,MORGANS-BELL H S,EMMANUEL S,et al. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay,Upper Jurassic,Southern England)[J]. Geochimica et Cosmochimica Acta,2004,68(14):3107-3123. doi: 10.1016/j.gca.2004.01.019
[22] FROST C D,BLANCKENBURG F V,SCHOENBERG R,et al. Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation[J]. Contributions to Mineralogy and Petrology,2007,153(2):211.
[23] SHARMA M,POLIZZOTTO M,ANBAR A D. Iron isotopes in hot springs along the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters,2001,194(1/2):39-51.
[24] BEARD B L,JOHNSON CM,SKULAN J L,et al. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Gology,2003,195(1/4):87-117.
[25] ROUXEL O,DOBBEK N,LUDDEN J,et al. Iron isotope fractionation during oceanic crust alteration[J]. Chemical Geology,2003,202:155-82. doi: 10.1016/j.chemgeo.2003.08.011
[26] SEVERMANN S,JOHNSON C M,BEARD B L,et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta,2006,70(8):2006-2022. doi: 10.1016/j.gca.2006.01.007