ANACHRONISTIC FACIES AND ITS ORIGIN OF THE LOWER TRIASSIC IN THE LOWER YANGTZE-SOUTH YELLOW SEA AREA
-
摘要:
“错时相”作为一种地质历史时期的特殊沉积类型,在扬子地区下三叠统广泛发育,是良好的海相碳酸盐岩油气储层之一。通过岩心和野外剖面资料,结合前人已有的研究,分析并总结了下扬子-南黄海地区“错时相”的特征及其分布规律,并探讨了其成因。研究结果表明,“错时相”出现在二叠纪末生物大灭绝后,类型包括薄层灰岩和条带灰岩、微生物岩、蠕虫状灰岩、扁平砾石砾岩等,其发育与特定的古构造、古海洋环境、古生物环境以及海平面的变化密切相关,并伴随着中生代古海洋生态的恢复而消失。研究“错时相”对于进一步认识下扬子-南黄海地区早三叠世古海洋环境和油气储层具有重要意义。
Abstract:As a special type of sediments in geological history, anachronistic facies developed widely of the Lower Triassic in the Yangtze region as a high quality carbonate reservoir. Based on the data from drilling cores and field sections, combined with previous studies, this paper analyzes and summarizes the characteristics and distribution pattern of the anachronistic facies in the lower Yangtze-South Yellow Sea region, and discussion its genesis. The results show that the anachronistic facies including thin-bedded limestone and zebra limestone, microbialite, wormlike limestone and flat pebble conglomerates, appeared right after the biological mass extinction by the end of Permian and disappeared immediately with the restoration of Mesozoic palaeoceanic ecosystem. The development of anachronistic facies is closely related to the paleostructure, palaeo-marine environment, palaeontological environment and sea level change, so the study of anachronistic facies is of great significance for further understanding of the palaeo-environment and oil and gas reservoirs of Early Triassic in the lower Yangtze-South Yellow Sea region.
-
表 1 下扬子地区下三叠统“错时相”分布
Table 1. The anachronistic facies distribution of the Lower Triassic in the Lower Yangtze region
-
[1] PRUSS S B,BOTTJER D J,CORSETTI F A,et al. A global marine sedimentary response to the end-Permian mass extinction:examples from southern Turkey and the western United States[J]. Earth-Science Reviews,2006,78:193-206.
[2] DENG B Z,WANG Y B,LI G S,et al. Lower Triassic anachronistic facies capping the Qinghai-Tibet Plateau seamount:implications for the extension of extraordinary oceanic conditions deep into the interior Tethys Ocean[J]. Global and Planetary Change,2015,132:31-38. doi: 10.1016/j.gloplacha.2015.06.009
[3] WIGNALL P B,TWITCHETT R J. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction[J]. Sedimentology,1999,46(2):303-316. doi: 10.1046/j.1365-3091.1999.00214.x
[4] WOODS A D,ALMS P D,MONARREZ P M,et al. The interaction of recovery and environmental conditions:an analysis of the outer shelf edge of western North America during the early Triassic[J]. Palaeogeography Palaeoclimatology Palaeoecology,2019,513:52-64. doi: 10.1016/j.palaeo.2018.05.014
[5] 马永生,郭旭升,凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发,2005,32(4):60-64. doi: 10.3321/j.issn:1000-0747.2005.04.010
[6] 马永生,蔡勋育,赵培荣. 元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报,2014,35(6):1001-1011. doi: 10.7623/syxb201406001
[7] 谭秀成,牟晓慧,罗冰,等. 四川盆地南部下三叠统飞仙关组一段台内鲕滩的主控因素[J]. 古地理学报,2010,12(1):49-55. doi: 10.7605/gdlxb.2010.01.005
[8] 陈建文,龚建明,李刚,等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿,2016,32(1):1-7.
[9] 花彩霞. 下扬子句容地区海相上组合油气地质条件评价[J]. 地质学刊,2014,38(2):200-205. doi: 10.3969/j.issn.1674-3636.2014.02.200
[10] 童金南,王德珲. 三叠纪年代地层与生物复苏[J]. 地球科学进展,2005,20(12):1321-1326. doi: 10.3321/j.issn:1001-8166.2005.12.007
[11] 殷鸿福,宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学(D辑:地球科学),2013,43(10):1539-1552.
[12] 童金南,殷鸿福. 三叠纪年代地层与中国建阶[J]. 地球科学:中国地质大学学报,2015,40(2):189-197.
[13] 程日辉,王璞珺,刘万洙,等. 下扬子区三叠纪层序地层样式对扬子板块与华北板块碰撞的响应[J]. 大地构造与成矿学,2004,28(2):134-141. doi: 10.3969/j.issn.1001-1552.2004.02.004
[14] ZHANG Y X,CHEN J W,ZHOU J Y,et al. Sedimentological sequence and depositional evolutionary model of Lower Triassic carbonate rocks in the South Yellow Sea Basin[J]. China Geology,2019,2(3):301-314.
[15] 左景勋,童金南,邱海鸥,等. 下扬子地区早三叠世碳酸盐岩碳同位素组成的演化特征[J]. 中国科学(D辑:地球科学),2006,36(2):109-122.
[16] 宋海军,童金南,熊炎林,等. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝[J]. 中国科学(D辑:地球科学),2012,42(8):1182-1191.
[17] SEPKOSKI J J. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna[C]//EINSELE G, SEILACHER A. Cyclic and Event Stratification. Heidelberg: Springer-Verlag, 1982: 371-385.
[18] 赵小明,牛志军,童金南,等. 早三叠世生物复苏期的特殊沉积:“错时相”沉积[J]. 沉积学报,2010,28(2):314-323.
[19] 钱守荣. 蠕虫状灰岩中的同生变形构造及其成因[J]. 安徽地质,1996,6(1):38-42.
[20] 张杰,童金南. 下扬子地区下三叠统蠕虫状灰岩及其成因[J]. 古地理学报,2010,12(5):535-548. doi: 10.7605/gdlxb.2010.05.004
[21] 钱迈平. 中下扬子区海相三叠纪叠层石及其环境演变[J]. 古生物学报,1995,34(6):731-741.
[22] WOODS A D,BAUD A. Anachronistic facies from a drowned Lower Triassic carbonate platform:Lower Member of the Alwa Formation (Baid Exotic),Oman Mountains[J]. Sedimentary Geology,2008,209:1-14.
[23] HIPS K,HAAS J. Calcimicrobial stromatolites at the Permian-Triassic boundary in a western Tethyan section,Bükk Mountains,Hungary[J]. Sedimentary Geology,2006,185(3):239-253.
[24] WIGNALL P,TWITCHETT R. Permian-Triassic sedimentology of Jameson Land,East Greenland:incised submarine channels in an anoxic basin[J]. Journal of the Geological Society,2002,159:691-703. doi: 10.1144/0016-764900-120
[25] 陈建文,雷宝华,梁杰,等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质,2018,38(3):1-23.
[26] 吴淑玉,刘俊,陈建文,等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质,2020,40(5):136-148.
[27] 芮晓庆,周圆圆,李志明,等. 苏北盆地阜宁组源储特征及页岩油勘探方向探讨[J]. 海洋地质与第四纪地质,2020,40(6):133-145.
[28] 李双林,董贺平,王建强,等. 南黄海盆地崂山隆起中南部海域油气目标地球化学探测:海底油气渗漏与双环状地球化学异常[J]. 海洋地质与第四纪地质,2020,40(2):137-149.
[29] 王明健,张训华,孟祥君,等. 南黄海盆地下三叠统层序地层格架[J]. 海洋地质前沿,2016,32(7):28-35.
[30] 冯增昭,吴胜和. 下扬子地区中、下三叠统青龙群岩相古地理研究及编图[J]. 沉积学报,1987,5(3):40-58.
[31] 陈建文,许明,雷宝华,等. 华北-扬子板块碰撞结构的识别:来自南黄海海域的证据[J]. 海洋地质与第四纪地质,2020,40(3):3-14.
[32] 李文强,郭兴伟,王艳忠,等. 基于海陆对比建立苏北-南黄海盆地晚二叠世—早三叠世地层格架[J]. 吉林大学学报(地球科学版),2020,50(1):18-30.
[33] 吴亚生,姜红霞,WAN Y,等. 二叠纪—三叠纪之交缺氧环境的微生物和微生物岩[J]. 中国科学(D辑:地球科学),2007,37(5):618-628.
[34] 姜红霞,吴亚生. 江西修水二叠系—三叠系界线地层树枝状微生物岩状岩石成因初解[J]. 地质论评,2007,53(3):323-328. doi: 10.3321/j.issn:0371-5736.2007.03.005
[35] 吴亚生,姜红霞,虞功亮,等. 微生物岩的概念和重庆老龙洞剖面P—T界线地层微生物岩成因[J]. 古地理学报,2018,20(5):737-775. doi: 10.7605/gdlxb.2018.05.053
[36] 刘丽静,姜红霞,吴亚生,等. 中国南方晚二叠世—早三叠世礁区生物群落演替序列与古环境变化:以四川盆地东北部盘龙洞剖面为例[J]. 中国科学(D辑:地球科学),2014,44(4):617-633.
[37] 梁杰,张银国,董刚,等. 南黄海海相中—古生界储集条件分析与预测[J]. 海洋地质与第四纪地质,2011,31(5):101-108.
[38] 周志澄,罗辉,WILLEMS H,等. 四川江油渔洞子二叠系—三叠系之交两种不同生物沉积之间的生态系突变[J]. 古生物学报,2016,55(1):70-86.
[39] 郭兴伟,朱晓青,牟林,等. 南黄海中部隆起二叠纪—三叠纪菊石的发现及其意义[J]. 海洋地质与第四纪地质,2017,37(3):121-128.
[40] 曹长群,郑全锋. 煤山二叠纪—三叠纪过渡期事件地层时序的微观地层记录[J]. 中国科学(D辑:地球科学),2009,39(4):481-487.
[41] 张红剑,周跃飞,谢巧勤,等. 安徽巢湖二叠系—三叠系界线微生物岩研究[J]. 合肥工业大学学报(自然科学版),2017,40(6):822-828.
[42] 张利伟,洪天求,贾志海. 安徽巢湖北部地区下三叠统和龙山组微生物岩及其意义[J]. 地质科学,2011,46(2):392-403. doi: 10.3969/j.issn.0563-5020.2011.02.009
[43] 殷鸿福,童金南. 扬子区晚二叠世—中三叠世海平面变化[J]. 地球科学(D辑:地球科学),1994,19(5):627-632.
[44] 刘计勇. 下扬子三叠系礁滩相储层分布特征[J]. 油气藏评价与开发,2016,6(6):1-6. doi: 10.3969/j.issn.2095-1426.2016.06.001
[45] 童金南,李红丽. 江苏无锡篙山下三叠统层序地层研究[J]. 地层学杂志,1996,4(20):257-261.