东海丽水凹陷古新统非典型湖相烃源岩及油气特征

陈晓东, 蒋一鸣, 漆滨汶, 于仲坤. 东海丽水凹陷古新统非典型湖相烃源岩及油气特征[J]. 海洋地质前沿, 2021, 37(4): 25-38. doi: 10.16028/j.1009-2722.2021.039
引用本文: 陈晓东, 蒋一鸣, 漆滨汶, 于仲坤. 东海丽水凹陷古新统非典型湖相烃源岩及油气特征[J]. 海洋地质前沿, 2021, 37(4): 25-38. doi: 10.16028/j.1009-2722.2021.039
CHEN Xiaodong, JIANG Yiming, QI Binwen, YU Zhongkun. AN ATYPICAL LACUSTRINE SOURCE ROCK AND ITS PETROLEUM CHARACTERISTICS IN THE LISHUI SAG OF THE EAST CHINA SEA[J]. Marine Geology Frontiers, 2021, 37(4): 25-38. doi: 10.16028/j.1009-2722.2021.039
Citation: CHEN Xiaodong, JIANG Yiming, QI Binwen, YU Zhongkun. AN ATYPICAL LACUSTRINE SOURCE ROCK AND ITS PETROLEUM CHARACTERISTICS IN THE LISHUI SAG OF THE EAST CHINA SEA[J]. Marine Geology Frontiers, 2021, 37(4): 25-38. doi: 10.16028/j.1009-2722.2021.039

东海丽水凹陷古新统非典型湖相烃源岩及油气特征

  • 基金项目: “十三五”国家科技重大专项“东海深层大型气田勘探评价技术”(2016ZX05027)
详细信息
    作者简介: 陈晓东(1967—),男,博士,高级工程师,主要从事油气地球化学和含油气系统方面的研究工作. E-mail:chenxd1@cnooc.com.cn
  • 中图分类号: P744.4;P618.13

AN ATYPICAL LACUSTRINE SOURCE ROCK AND ITS PETROLEUM CHARACTERISTICS IN THE LISHUI SAG OF THE EAST CHINA SEA

  • 东海陆架盆地丽水凹陷主力烃源岩为古新统月桂峰组湖相泥岩,已发现油气以天然气为主,含少量凝析油,与以原油为主的中国东部典型断陷湖盆存在差异。对月桂峰组湖相泥岩进行了综合评价,发现其存在不能生烃的死碳,烃源岩的热演化成熟度与烃源岩形成石油的转化参数之间存在差异。月桂峰组有机质主要来源于陆源有机质,湖相水生生物来源的比例变化较大。烃源岩地球化学特征与典型湖相烃源岩存在差异。总结了湖盆类型对烃源岩的控制因素以及不同湖盆类型烃源岩形成油气的主要特征,并与月桂峰组湖相泥岩及已发现油气特征进行了对比,表明月桂峰组沉积期发育过补偿和平衡补偿湖盆。月桂峰组泥岩为非典型湖相烃源岩。

  • 加载中
  • 图 1  丽水凹陷构造位置及构造单元划分

    Figure 1. 

    图 2  丽水凹陷地层综合柱状图

    Figure 2. 

    图 3  丽水凹陷热演化剖面

    Figure 3. 

    图 4  丽水凹陷月桂峰组泥岩热解特征

    Figure 4. 

    图 5  丽水凹陷原油和月桂峰组烃源岩的姥鲛烷植烷特征

    Figure 5. 

    图 6  丽水凹陷月桂峰组泥岩色谱质谱图

    Figure 6. 

    图 7  丽水凹陷原油和月桂峰组泥岩生物标志化合物参数特征

    Figure 7. 

    图 8  丽水凹陷原油和月桂峰组烃源岩规则甾烷三角图

    Figure 8. 

    图 9  丽水凹陷原油环烷烃特征

    Figure 9. 

    图 10  丽水凹陷原油轻烃组成关系

    Figure 10. 

    图 11  不同湖盆类型形成原油与丽水凹陷原油典型生物标志化合物特征对比

    Figure 11. 

    图 12  丽水凹陷天然气碳同位素组成分布

    Figure 12. 

    图 13  丽水凹陷天然气成因判识

    Figure 13. 

    表 1  丽水凹陷原油C4—C7轻烃组成

    Table 1.  C4-C7 light hydrocarbon composition of crude oil in Lishui Sag

    正构烷烃/%异构烷烃/%环烷烃/%芳烃/%
    丽水凹陷WZ26井41.7343.6712.242.36
    LS36井25.3530.8240.862.98
    LF井33.1231.3633.212.31
    锦州20-2(淡水湖相)28.5224.6838.398.56
    31.4327.9633.626.99
    30.0426.7135.787.47
    板桥(淡水湖相)29.2143.3718.339.12
    24.8536.3232.796.04
    32.4338.6223.755.19
    26.3323.3336.8113.53
    29.5737.4428.674.33
    28.7736.2628.266.70
    崖13-1(滨海沼泽相)16.8724.3133.7125.11
    21.8627.6323.4727.04
    13.7615.3034.1036.83
    21.2125.5928.9124.38
    16.6615.8741.0726.41
    下载: 导出CSV

    表 2  丽水凹陷原油族组成与碳同位素特征

    Table 2.  Group composition and carbon isotope of crude oil in Lishui Sag

    井号层位颜色饱和烃/%芳烃/%非烃/%沥青质/%全油碳同位素/‰
    WZ26月桂峰组浅棕色91.332.232.064.38−28.7
    LS36明月峰组黄色65.7929.024.280.90−26.2
    LS36明月峰组黄色72.4626.810.410.32−26.8
    LF太古宙棕黑色90.424.263.112.21−27.4
    下载: 导出CSV

    表 3  丽水凹陷天然气成分组成

    Table 3.  Composition of natural gas in Lishui Sag

    井号C1/%C2/%C3/%nC4/%nC5/%iC4/%iC5/%C6+/%CO2/%N2/%
    WZ134.760.510.170.030.010.030.0194.47
    WZ131.190.140.040.020.02098.59
    LS3655.453.631.880.470.090.420.150.2134.153.55
    LS3655.103.671.920.480.090.430.160.2134.503.44
    LS3656.523.832.690.750.300.500.341.1131.741.06
    LF59.4811.9510.024.491.694.042.176.16
    下载: 导出CSV

    表 4  丽水凹陷天然气中有机烃类成分组成与碳同位素组成

    Table 4.  Composition and carbon isotope of natural gas in Lishui Sag

    井号有机烃类成分碳同位素
    C1/%C2/%C3/%nC4/%nC5/%iC4/%iC5/%C6+/%C2+/%C1/C1+C1/‰C2/‰C3/‰nC4/‰CO2/‰
    WZ1386.239.243.080.540.180.540.18013.760.86−44.20−29.20−32.60−17.20−4.00
    WZ1384.409.932.841.4201.420015.610.84−46.60−33.00−33.20−26.30−4.20
    LS3689.005.833.020.750.140.670.240.3410.990.89−46.30−29.55−29.96−26.86−5.03
    LS3688.795.913.090.770.150.690.260.3411.210.89−46.13−29.31−27.07−26.93−4.67
    LS3685.585.804.071.140.450.760.511.6814.410.86−44.40−28.90−26.40−27.00−4.60
    LF63.3812.7310.684.781.804.312.31036.610.63−44.76−27.24−25.13−25.52−22.20
    下载: 导出CSV

    表 5  丽水凹陷已钻遇月桂峰组烃源岩地球化学特征

    Table 5.  Geochemical characteristics of source rocks in Yueguifeng Formation that encountered in Lishui Sag

    湖相淡水湖相咸水WZ26井 月桂峰组WZ13井 月桂峰组LS35井 月桂峰组WZ4井 月桂峰组
    Ro/%0.4~0.70.4~0.80.88~1.380.9~1.18
    饱和烃/%40~6025~5528.51~81.913.99~7.997.87~27.1426.15~46.57
    δ13C(PDB/‰)<−28−23~−27−27~−28.1
    主峰碳nC23nC19nC17nC34nC17nC19nC27
    奇偶比≥1≥1≥1≥1≥1≥1
    姥植比>1.3>1.1>1.87>1.78>1.13>1.5
    C27/C29甾烷1.5~4.01.5~2.50.66~1.510.51~0.911.02~2.510.34~0.47
    重排甾烷指数20~4010~508.9~345~4712.1~1717~24
    4-甲基甾烷指数30~5030~150
    藿烷/甾烷5~305~303.2~16.91.15~8.87.7~14.530~65
    三环萜烷指数30~100100~200103~28728~72057~2345.1~8.5
    C34/C35 藿烷>1>10.2~1.80.42~1.060.5~0.720.5~0.9
    双降藿烷指数03~15
    奥利烷指数000.06~60.08~0.990.03~0.60~0.02
    Ts/Tm>1<10.49~1.460.23~0.980.95~2.060.45~0.57
    下载: 导出CSV

    表 6  湖盆类型对烃源岩的控制因素

    Table 6.  Controlling factors of basin types on source rocks

    湖盆类型有机质生产力破坏稀释烃源潜力
    过补偿 营养物质供给多;淡水输入会降低营养物质浓度;随着湖盆体积增大生产力总体下降 水体底部氧气供给增加会破坏有机质;风的搅动形成均一的水体不利于有机质保存;冷的底流不利于有机质保存;扰动强度加大破坏有机质 丰富的碎屑会降低有机质丰度;大量的陆源碎屑 中等—差的油/气潜力;油气同生;明显的侧向变化;TOC:泥岩<1%~7%,煤<80%;有机质类型:藻类和陆源有机质混合(Ⅰ/Ⅱ);HI:50~600;厚度:0~100 m
    平衡补偿 合适的营养物质供给;不定期的干燥增加营养物质浓度;大量的湖盆水体位于透光带有利于高生产力 封闭的盆地和不定期的干燥利于形成密度分层保护有机质;巨大的生产力消耗了水体底部的氧气有利于有机质保存 变化、相对较少的碎屑不会降低有机质丰度;少量的陆源碎屑有利于有机质保存;不定期的洪水和泄洪带来大量碎屑并会带走有机质 中等—很好的生油潜力;生油为主、有时少量气;侧向变化很少;TOC:1%~30%;有机质类型:主要藻类(Ⅰ),部分陆源有机质(Ⅱ);HI:500~700;厚度:相对较薄(1~10 m)
    欠补偿 变化的营养物质供给;不定期的干燥增加营养物质浓度;过度的矿物质浓缩会破坏生物生存降低生产力;只有部分时间水体可以生产有机质 不定期的干燥使有机质氧化;不定期的淡化会带来氧气破坏有机质 半干旱气候提供最大的碎屑供给;较少的陆源有机质供给相对提高了藻类物质的丰度;由于大量矿物沉淀提高盐度有利于有机质保存 差—中等的生油潜力;生油为主;很小侧向变化;TOC:<0.5%~20%;有机质类型:藻类(Ⅰ);HI:50~600;厚度:相对较薄(1~10 m)
    下载: 导出CSV

    表 7  不同湖盆类型生成油气特征与丽水凹陷已发现油气特征对比

    Table 7.  Comparison of petroleum characteristics in Lishui Sag to those in different lake types basins

    湖盆类型已发现油气井
    过补偿平衡补偿欠补偿LS36LS36WZ26LF
    生烃潜力变化变化
    有机质陆源有机质,水生生物主要水生生物,部分陆源有机质
    沉积水体淡水
    氧化还原程度弱氧化、氧化
    油气类型油、部分气和凝析油
    含蜡量>20 %5%~25%<5%~10%<0.52%>18>18
    API24°~57°18°~45°12°~37°
    倾点−5°~>20°25°~59°−5°~>20°
    含硫量高,一般1%,可高达2%0.28
    含氮化合物含氮化合物+芳烃5%~40%
    Pr /Ph<1~2.0< 155.52.863.61
    藿烷/甾烷0.5~152.472.11.721.55
    甾烷C29C27C27C29C29
    C29 去甲基甾烷丰富
    4-甲基甾烷有时含量高伴有甲藻甾烷
    伽马蜡烷0.10.090.7920.152
    β胡萝卜烷常常检测不到中等含量很高
    下载: 导出CSV
  • [1]

    葛和平,陈志勇,方来富,等. 丽水凹陷油气成藏期次探讨[J]. 中国海上油气(地质),2003,17(1):44-50.

    [2]

    葛和平,陈晓东,刁慧, 等. 东海盆地丽水凹陷原油地球化学特征及油源分析[J]. 中国海上油气,2012,24(24):8-12, 31.

    [3]

    葛和平,陈建平,陈晓东,等. 东海盆地丽水凹陷天然气类型及其成因探讨[J]. 中国科学(D 辑: 地球科学),2007,37(S2):104-110.

    [4]

    CARROLL A R,BRASSELL S C,GRAHAM S A,et al. Upper Permian lacustrine oil shales, Southern Junggar Basin, Northwest China[J]. AAPG Bulletin,1992,76(12):1874-1902.

    [5]

    CARROLL A R. Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China[J]. Organic Geochemistry,1998,28(11):649-667. doi: 10.1016/S0146-6380(98)00040-0

    [6]

    CARROLL A R,BOHACS K M. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls[J]. Geology,1999,27(2):99-102. doi: 10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2

    [7]

    CARROLL A R,BOHACS K M. Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin,2001,85(6):1033-1053.

    [8]

    申雯龙,漆滨汶. 东海盆地丽水凹陷有效烃源岩判定及分布预测[J]. 地质科技通报,2020,39(3):77-88.

    [9]

    中国石油天然气总公司. SY/T 5735-1995 陆相烃源岩地球化学评价方法[S]. 北京: 中国石油天然气总公司, 1995.

    [10]

    中国海洋石油总公司. Q/HS 1017-2006 烃源岩地球化学定量评价规范[S]. 北京: 中国海洋石油总公司, 2006.

    [11]

    PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993.

    [12]

    HAZRA B, WOOD D A, MANI D, et al. Evaluation of shale source rocks and reservoirs[M]. Springer Nature Switzerland AG, 2019: 1-142.

    [13]

    COMFORD C. Mandal-Ekofisk(!) Petroleum System in the Central Graben of the North Sea[C]//Magoon L B, DOW W G. The petroleum svstem: from source to trap. AAPG Memoir 60, 1994: 537-571.

    [14]

    SCHNEIDER A C,MUTTERLOSE J,BLUMENBERG M,et al. Palynofacies, micropalaeontology, and source rock evaluation of nonmarine Jurassic-Cretaceous boundary deposits from northern Germany: implications for palaeoenvironment and hydrocarbon potential[J]. Marine and Petroleum Geology,2019,103:526-548. doi: 10.1016/j.marpetgeo.2019.02.016

    [15]

    SONG J L,LITTKE R,WENIGER P,et al. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe[J]. International Journal of Coal Geology,2015,150/151:127-153. doi: 10.1016/j.coal.2015.08.011

    [16]

    COLLISTER J W,WAVREK D A. δ13C compositions of saturate and aromatic fractions of lacustrine oils and bitumens: evidence for water column stratification[J]. Organic Geochemistry,1996,24(8/9):913-920.

    [17]

    PETERS K E, WALTERS C C, MOLDOWA J M. The biomarker guide: biomarkers and isotopes in petroleum exploration and earth history[M]. (vol. 2).Cambridge: Cambridge University Press, 2005.

    [18]

    PETERS K E,LILLIS P G,LORENSON T D,et al. Geochemically distinct oil families in the onshore and offshore Santa Maria basins, California[J]. AAPG Bulletin,2019,103(2):243-271. doi: 10.1306/07111818014

    [19]

    HOSSEINIA H S,HORSFIELD B,WILKES H,et al. Comprehensive geochemical correlation between surface and subsurface hydrocarbon occurrences in the Batman-Mardin-Şırnak area (SE Turkey)[J]. Marine and Petroleum Geology,2018,93:95-112. doi: 10.1016/j.marpetgeo.2018.02.035

    [20]

    GAO G,YANG S R,ZHANG W W,et al. Organic geochemistry of the lacustrine shales from the Cretaceous Taizhou Formation in the Gaoyou Sag, Northern Jiangsu Basin[J]. Marine and Petroleum Geology,2018,89(1):594-603.

    [21]

    卢松年,张刚. 一种新的凝析油形成模式[J]. 中国科学(B辑: 化学 生命科学 地学),1994,24(1):81-86.

    [22]

    LEYTHAEUSER D,SCHAEFER R G,CORNFORD C,et al. Generation and migration of light hydrocarbons C2-C7 in sedimentary basins[J]. Organic Geochemistry,1979,1:191-204. doi: 10.1016/0146-6380(79)90022-6

    [23]

    胡惕麟,戈葆雄,张义纲,等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质,1990,12(4):375-394, 450. doi: 10.11781/sysydz199004375

    [24]

    MANGO F K. The origin of light hydrocarbons in petroleum: a kinetic test of the steady-state catalytic hypothesis[J]. Geochimica et Cosmochimica Acta,1990,54(5):1315-1323. doi: 10.1016/0016-7037(90)90156-F

    [25]

    王培荣,朱俊章,方孝林,等. 一种新的原油轻烃分类法[J]. 石油学报,1998,19(1):24-28. doi: 10.3321/j.issn:0253-2697.1998.01.005

    [26]

    徐永昌, 沈平, 刘文汇, 等. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994.

    [27]

    KATZ B J. Controls on distribution of lacustrine source rocks through time and space[C]//Katz B J. Lacustrine basin exploration-case study and modern analogs. AAPG Memoir 50, 1990: 61-76.

    [28]

    KATZ B J. Lacustrine basin hydrocarbon exploration: current thoughts[J]. Journal of Paleolimnology,2001,26(2):161-179. doi: 10.1023/A:1011173805661

    [29]

    MELLO M R,GAGLIANONE P C,BRASSELL S C,et al. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils[J]. Marine and Petroleum Geology,1988,5(3):205-223. doi: 10.1016/0264-8172(88)90002-5

    [30]

    POWELL T G. Petroleum geochemistry and depositional setting of lacustrine source rocks[J]. Marine and Petroleum Geology,1986,3(3):200-219. doi: 10.1016/0264-8172(86)90045-0

    [31]

    MURRAY A P,SUMMONS R E,BOREHAM C J,et al. Biomarker and n-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting[J]. Organic Geochemistry,1994,22(3/5):521-542.

    [32]

    HORSFIELD B,CURRY D J,BOHACS K,et al. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U. S. A.[J]. Organic Geochemistry,1994,22(3/5):415-440.

    [33]

    BOHACS K M. Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence- stratigraphic geochemical framework[C]//GIERLOWSKI-KORDESCH E H, KELTS K R. Lake basins through space and time. AAPG Studies in Geology 46, 2000: 3-34.

  • 加载中

(13)

(7)

计量
  • 文章访问数:  2170
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-02-20
刊出日期:  2021-04-28

目录