南海海山铁锰结核元素赋存形式

许雅晶, 周怀阳. 南海海山铁锰结核元素赋存形式[J]. 海洋地质前沿, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146
引用本文: 许雅晶, 周怀阳. 南海海山铁锰结核元素赋存形式[J]. 海洋地质前沿, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146
XU Yajing, ZHOU Huaiyang. The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea[J]. Marine Geology Frontiers, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146
Citation: XU Yajing, ZHOU Huaiyang. The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea[J]. Marine Geology Frontiers, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146

南海海山铁锰结核元素赋存形式

  • 基金项目: 国家自然科学基金“南海深部计划重点项目”(91428207)
详细信息
    作者简介: 许雅晶(1995—),女,硕士,主要从事大洋锰结核方面的研究工作. E-mail:xuyajing@tongji.edu.cn
    通讯作者: 周怀阳(1961—),男,博士,教授,主要从事海洋化学与海洋矿产等方面的研究工作. E-mail:zhouhy@tongji.edu.cn
  • 中图分类号: P744.3

The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea

More Information
  • 铁锰结核中主微量元素的赋存形式研究对于理解铁锰结核的形成及其中元素的进入过程具有重要意义。选择采集自南海蛟龙海山水深约3 300 m的3个铁锰结核,根据其内部剖面上原位X荧光光谱分析(XRF)的主量元素含量差异分层进行了分层取样。对于分层样品开展了淋滤实验,分别提取样品中的碳酸盐相、锰矿物相、铁矿物相和残渣相组分,并将该4种组分以及原样中主微量元素加以分析比较。结果表明,蛟龙海山结核多数主要元素赋存方式基本上类似于大洋水成型结核结壳,但相对于大洋水成型结核结壳,Al、K、Mg、Li、Ti在碎屑相中赋存比例更高,呈现出边缘海水成型结核元素赋存方式的特点。圈层之间部分元素赋存形式略有变化,其中Mg、Cu、Ni、Zn从核心到边缘在锰矿物相中的赋存比例随着Mn/Fe比值的升高而增加,体现了不同生长阶段结核元素和矿物组成的变化。即Mn/Fe比值越高,说明锰氧化物/铁氧化物比值越高,而Mg、Cu、Ni、Zn主要赋存于锰氧化物中,所以Mg、Cu、Ni、Zn赋存于锰矿物相/铁矿物相的比例增加。此外,通过与前人关于南海蛟龙海山结核淋滤结果的对比发现,实验试剂与反应时间对于结核淋滤结果有较大影响。

  • 加载中
  • 图 1  结核R2053-N9-11剖面原位微区XRF扫描Mn、Fe、Ti、Al的分层结果

    Figure 1. 

    图 2  淋滤实验流程图

    Figure 2. 

    图 3  铁锰结核样品不同圈层成因三角图[7,26]

    Figure 3. 

    图 4  铁锰结核分层样品4种淋滤相态主量元素含量分布图

    Figure 4. 

    图 5  铁锰结核分层样品4种相态微量元素含量分布图

    Figure 5. 

    图 6  分层结核样品Mg、Ni、Cu、Zn锰铁矿物相赋存百分比(L2/L3)和Mn/Fe比相关分析

    Figure 6. 

    表 1  元素分层淋滤比例标准差

    Table 1.  Standard deviations of elements distributions in the leaches

    元素R2053-N8-2-2R2053-N8-3R2053-N9-11
    L1L2L3L4L1L2L3L4L1L2L3L4
    Al0.080.872.723.500.100.485.005.420.111.442.703.74
    Ca6.223.590.244.405.382.220.106.575.751.960.436.47
    Fe0.022.094.595.490.011.922.362.430.033.595.257.23
    K3.361.721.024.616.064.231.416.271.073.690.643.26
    Mg1.345.371.693.798.029.251.455.773.344.750.843.84
    Mn0.010.830.790.030.011.411.350.070.041.181.110.11
    P0.340.242.682.530.000.003.323.321.410.007.076.29
    Ti0.020.153.363.500.010.101.711.630.050.167.257.15
    Co0.021.121.120.020.010.860.890.060.030.390.410.05
    Ni0.283.963.570.240.466.595.720.420.171.981.640.23
    Cu0.536.143.794.821.267.194.212.250.647.313.056.05
    Zn0.7810.097.324.080.688.035.862.521.517.953.694.90
    Sr4.684.370.351.353.460.900.112.763.035.020.513.56
    Mo0.200.981.050.210.150.902.372.970.111.651.552.01
    Li12.264.411.7514.759.783.231.1911.4710.753.670.478.52
    Pb0.043.362.741.520.023.211.163.320.056.124.533.57
    Th0.080.211.091.180.050.161.111.310.100.171.811.83
    注:加粗数字表示元素在某相中不同层位赋存比例标准差大于元素回收率标准差。回收率为元素在4个相中含量之和除以未淋滤样品中测得
    含量。
    下载: 导出CSV
  • [1]

    HEIN J R,MIZELL K,KOSCHINSKY A,et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [2]

    HEIN J R, KOSCHINSKY A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry (Second Edition). Elsevier, 2014, 13: 273-291.

    [3]

    RONA P A. The changing vision of marine minerals[J]. Ore Geology Reviews,2008,33(3/4):618-666.

    [4]

    鲍根德,李全兴. 南海铁锰结核(壳)的元素地球化学研究[J]. 热带海洋,1991,10(3):7.

    [5]

    鲍根德,李全兴. 南海铁锰结核(壳)的稀土元素地球化学[J]. 海洋与湖沼,1993,24(3):304-313. doi: 10.3321/j.issn:0029-814X.1993.03.013

    [6]

    林振宏,季福武,张富元,等. 南海东北陆坡区铁锰结核的特征和成因[J]. 海洋地质与第四纪地质,2003,23(1):7-12.

    [7]

    GUAN Y,SUN X,REN Y,et al. Mineralogy,geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea[J]. Ore Geology Reviews,2017,89:206-227. doi: 10.1016/j.oregeorev.2017.06.020

    [8]

    ZHONG Y,CHEN Z,GONZÁLEZ F J,et al. Composition and genesis of ferromanganese deposits from the northern South China Sea[J]. Journal of Asian Earth Sciences,2017,138:110-128. doi: 10.1016/j.jseaes.2017.02.015

    [9]

    BATURIN G N. Element composition of ferromanganese concretions in the Black Sea[J]. Oceanology,2010,50(1):83-92. doi: 10.1134/S0001437010010108

    [10]

    GONZÁLEZ F J,SOMOZA L,LEÓN R,et al. Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic):palaeoenvironmental records of fluid venting and bottom currents[J]. Chemical Geology,2012,310/311(5):56-78.

    [11]

    BATURIN G N,DUBINCHUK V T,NOVIGATSKY A N. Phase distribution of elements in ferromanganese nodules of the Kara Sea[J]. Doklady Earth Sciences,2016,471(1):1199-1203.

    [12]

    VERESHCHAGIN O S,PEROVA E N,BRUSNITSYN A I,et al. Ferro-manganese nodules from the Kara Sea:mineralogy,geochemistry and genesis[J]. Ore Geology Reviews,2019,106:192-204. doi: 10.1016/j.oregeorev.2019.01.023

    [13]

    BATURIN G N. Geochemistry of ferromanganese nodules in the Gulf of Finland,Baltic Sea[J]. Lithology and Mineral Resources,2009,44(5):411-426. doi: 10.1134/S0024490209050010

    [14]

    CONRAD T,HEIN J R,PAYTAN A,et al. Formation of Fe-Mn crusts within a continental margin environment[J]. Ore Geology Reviews,2017,87:25-40. doi: 10.1016/j.oregeorev.2016.09.010

    [15]

    徐兆凯,李安春,蒋富清,等. 东菲律宾海深水区新型铁锰结壳的特征和成因[J]. 海洋地质与第四纪地质,2006,26(4):91-98.

    [16]

    USUI A,GRAHAM I J,DITCHBURN R G,et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate,northwest Pacific Ocean[J]. Island Arc,2007,16:420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [17]

    张振国,方念乔,杜远生,等. 南海西北缘多金属结核地球化学及其与大洋结核的对比[J]. 海洋地质与第四纪地质,2008,28(4):51-56.

    [18]

    ZHONG Y,CHEN Z,GONZÁLEZ,et al. Rare earth elements and yttrium in ferromanganese deposits from the South China Sea:distribution,composition and resource considerations[J]. Acta Oceanologica Sinica,2018,37:41-54.

    [19]

    ZHONG Y,LIU Q,CHEN Z,et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry,mineralogy and isotopes[J]. Marine Geology,2019,410:146-163. doi: 10.1016/j.margeo.2018.12.006

    [20]

    ZHONG Y,CHEN Z,HEIN J R,et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene[J]. Quaternary Science Reviews,2020,229:106-106.

    [21]

    GUAN Y,SUN X M,JIANG X D,et al. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta Oceanologica Sinica,2017,36(6):34-46. doi: 10.1007/s13131-017-1004-4

    [22]

    GUAN Y,REN Y Z,SUN X M,et al. Helium and argon isotopes in the Fe-Mn polymetallic crusts and nodules from the South China Sea:constraints on their genetic sources and origins[J]. Minerals,2018,8(10):471. doi: 10.3390/min8100471

    [23]

    GUAN Y,REN Y Z,SUN X M,et al. Fine scale study of major and trace elements in the Fe-Mn nodules from the South China Sea and their metallogenic constraints[J]. Marine Geology,2019,416:105978. doi: 10.1016/j.margeo.2019.105978

    [24]

    REN Y Z,SUN X M,GUAN Y,et al. Distribution of rare earth elements plus yttrium among major mineral phases of marine Fe-Mn crusts from the South China Sea and western Pacific Ocean:a comparative study[J]. Minerals,2018,9(1):8.

    [25]

    KOSCHINSKY A,HALBACH P. Sequential leaching of marine ferromanganese precipitates:genetic implications[J]. Geochimica et Cosmochimica Acta,1995,59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [26]

    BONATTI E. Classification and genesis of submarine iron-manganese deposits[J]. Ferromanganese Deposits on the Ocean Floor,1972:149-166.

    [27]

    MOHWINKEL D,KLEINT C,KOSCHINSKY A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores[J]. Applied Geochemistry,2014,43:13-21. doi: 10.1016/j.apgeochem.2014.01.010

    [28]

    BYRNE R H. Inorganic speciation of dissolved elements in seawater:the influence of pH on concentration ratios[J]. Geochemical Transactions,2002,3(1):11-16. doi: 10.1186/1467-4866-3-11

    [29]

    KOSCHINSKY A,HEIN J R. Uptake of elements from seawater by ferromanganese crusts:solid-phase associations and seawater speciation[J]. Marine Geology,2003,198(3/4):331-351.

    [30]

    KOSCHINSKY A,HEIN J R,KRAEMER D,et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach[J]. Chemical Geology,2019,539:119426.

    [31]

    KONSTANTINOVA N,HEIN J R,et al. Mineral phase-element associations based on sequential leaching of ferromanganese crusts,Amerasia Basin Arctic Ocean[J]. Minerals,2018,8(10):460-460. doi: 10.3390/min8100460

    [32]

    MURRAY J W,DILLARD J G. The Oxidation of Cobalt (II) adsorbed on manganese dioxide[J]. Geochimica et Cosmochimica Acta,1979,43(5):781-787. doi: 10.1016/0016-7037(79)90261-8

    [33]

    乔志国. 深海铁锰结核中锰矿物的微观特征[J]. 自然杂志,2016,38(4):263-270.

    [34]

    PUJING P,SUSAK N J. The speciation of cobalt in seawater and fresh waters at 25 degrees C[J]. Geochemical Journal,1991,25:411-420. doi: 10.2343/geochemj.25.411

    [35]

    TAKAHASHI Y,MANCEAU A,GEOFFROY N,et al. Chemical and structural control of the partitioning of Co,Ce,and Pb in marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta,2007,71(4):984-1008. doi: 10.1016/j.gca.2006.11.016

    [36]

    BYRNE R H,KUMP L R,CANTRELL K J. The influence of temperature and pH on trace metal speciation in seawater[J]. Elsevier,1988,25(2):163-181.

    [37]

    STANLEY J K,BYRNE R H. Inorganic complexation of Zinc(II) in seawater[J]. Geochimica et Cosmochimica Acta,1990,54(3):753-760. doi: 10.1016/0016-7037(90)90370-Z

    [38]

    MANCEAU A,LANSON M,GEOFFROY N. Natural speciation of Ni,Zn,Ba,and As in ferromanganese coatings on quartz using X-ray fluorescence,absorption,and diffraction[J]. Geochimica et Cosmochimica Acta,2007,71(1):95-128. doi: 10.1016/j.gca.2006.08.036

    [39]

    PIPER D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta,1974,38(7):1007-1022. doi: 10.1016/0016-7037(74)90002-7

    [40]

    STUMM W, MORGAN J J. Aquatic Chemistry[M]. 3rd ed. New York: Wiley, 1996.

    [41]

    SOHRIN Y,MATSUI M,NAKAYAMA E. Contrasting behaviour of tungsten and molybdenum in the Okinawa Trough,the East China Sea and the Yellow Sea[J]. Geochimica et Cosmochimica Acta,1999,63:3457-3466. doi: 10.1016/S0016-7037(99)00273-2

    [42]

    FOSTER A, KLOFAS J, HEIN J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and leastsquares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting, 2011: 5-11.

    [43]

    周怀阳,朱启宽,季福武,等. 南海深水海山上的新发现[J]. 科技导报,2020,600(18):85-90.

    [44]

    武光海,周怀阳,杨树锋,等. 富钴结壳生长过程中铁锰氧化物矿物组合的变化[J]. 矿物学报,2001,21(2):137-143. doi: 10.3321/j.issn:1000-4734.2001.02.004

    [45]

    LYLE M,DYMOND J,HEATH G R. Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin,northwest Nazca plate[J]. Earth and Planetary Science Letters,1977,35(1):55-64. doi: 10.1016/0012-821X(77)90028-0

    [46]

    HALBACH P,SCHERHAG C,HEBISCH U,et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacifific Ocean[J]. Mineralium Deposita,1981,16(1):59-84.

    [47]

    USUI A,SOMEYA M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society London Special Publications,1997,119(1):177-198. doi: 10.1144/GSL.SP.1997.119.01.12

    [48]

    POST J E. Manganese oxide minerals:crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3447-3454. doi: 10.1073/pnas.96.7.3447

    [49]

    MELLIN T A,LEI G. Stabilization of 10-manganates by interlayer cations and hydrothermal treatment:implications for the mineralogy of marine manganese concretions[J]. Marine Geology,1993,115(1/2):67-83.

    [50]

    仲义,陈忠,莫爱彬,等. 南海北部铁锰结核成因及元素的赋存状态[J]. 热带海洋学报,2017,36(2):48-59.

    [51]

    RAY S,GAULT H R,DODD C G. The separation of clay minerals from carbonate rocks[J]. American Mineralogist,1957,42:681-686.

    [52]

    CHESTER R,HUGHES M J. A chemical technique for the separation of ferro-manganese minerals,carbonate minerals and adsorbed trace elements from pelagic sediments[J]. Chemical Geology,1967,2:249-262. doi: 10.1016/0009-2541(67)90025-3

    [53]

    MOORBY S A,CRONAN D S. The distribution of elements between co-existing phases in some marine ferromanganese-oxide deposits[J]. Geochimica et Cosmochimica Acta,1981,45(10):1855-1877. doi: 10.1016/0016-7037(81)90016-8

    [54]

    BERGER C J M,LIPPIATT S M,LAWRENCE M G,et al. Application of a chemical leach technique for estimating labile particulate aluminum,iron,and manganese in the Columbia River plume and coastal waters off Oregon and Washington[J]. Journal of Geophysical Research:Oceans,2008,113:C00B01.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  2203
  • PDF下载数:  172
  • 施引文献:  0
出版历程
收稿日期:  2021-04-10
录用日期:  2021-02-10
刊出日期:  2022-04-28

目录