The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area, Xihu Sag
-
摘要:
西湖凹陷始新统平湖组发育海陆过渡相沉积体系,岩性组合以三角洲-潮坪过渡相的砂、泥、煤薄互层为特征,由于沉积构造复杂、沉积微相类型多样,不同学者对沉积体系类型的认识一直存在争议,沉积体系及沉积模式的不确定性进一步制约了平湖组勘探开发的进程。基于平湖组岩芯、测井及分析化验资料,厘定了平湖组一、二段海侵域P7层典型相类型及相标志,采用地震沉积学地层切片方法提取了典型潮控三角洲地质形态,总结了西湖凹陷平湖组海侵域潮控三角洲典型沉积特征。研究区潮控三角洲砂体受潮汐改造作用强,发育典型双黏土层、再作用面、韵律层理、潮汐束等沉积构造;潮控三角洲主要发育三角洲前缘亚相,局部发育三角洲平原;海侵时期海平面快速上升,三角洲前缘受潮汐改造作用强,形成潮汐砂坝与潮汐水道为主的砂体,潮控三角洲侧边发育潮汐水道为主的砂体,潮汐砂坝与潮汐水道是有利的储层发育相带。研究区潮控三角洲沉积模式的建立为西湖凹陷平湖组滚动勘探开发指明方向。
Abstract:The Pinghu Formation of Eocene in the Pinghu area of Xihu Sag is a set of transitional deposits consisting of alternative marine and non-marine depositional systems, which are characterized by thinly interbedded sand, mud and coal seams of deltaic-tidal transitional facies. Due to the complexity of sedimentary structures and the diversity of sedimentary microfacies, it has remained controversial among scholars about their origin and depositional systems. The uncertainty of sedimentary system restricted oil and gas exploration and development. Based on the core, logging and other analysis data from the Pinghu Formation, this paper defined the typical facies types and described their sedimentary characteristics for the P7 layer formed in the transgressive domain in the first and second stages of Pinghu Period. By means of seismic sedimentology, typical tidal delta is recognized and the depositional characteristics of tidal delta in the transgressive summarized. The sandbodies of tide-dominated delta are strongly reformed by tide. There develop such typical sedimentary structures as double clay layers, reaction surface, rhythmic bedding and tidal bundles. The tide dominated delta is mainly composed of the subfacies of inner and outer deltaic fronts, with deltaic plain locally. During the transgression period, the sea level rose rapidly, the delta front was strongly reworked by tide, and as the result, the sand bodies dominated by tidal bars and tidal channels were formed. It is believed that the establishment of tide-dominated deltaic sedimentary model in this paper may provided a clue and guideline for further exploration and development of oil and gas in the Pinghu Formation of the Xihu Sag.
-
Key words:
- tide dominated delta /
- tide flat /
- depositional model /
- transgressive system tract /
- Pinghu Formation /
- Xihu Sag
-
图 1 平湖油气田构造位置[17]
Figure 1.
-
[1] 蔡华,秦兰芝,刘英辉. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式[J]. 地球科学,2019,44(3):881-897.
[2] 周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气,2020,32(1):1-12.
[3] 何玉平. 东海盆地西湖凹陷天台区始新世平湖组风暴岩的发现及其地质意义[J]. 吉林大学学报(地球科学版),2020,50(3):500-508.
[4] 周荔青,江东辉,张尚虎,等. 东海西湖凹陷大中型油气田形成条件及勘探方向[J]. 石油实验地质,2020,42(5):803-812. doi: 10.11781/sysydz202005803
[5] JIA H B,JI H C,LI X W,et al. A retreating fan-delta system in the northwestern Junggar Basin, Northwestern China: characteristics, evolution and controlling factors[J]. Journal of Asian Earth Sciences,2016,123:162-177. doi: 10.1016/j.jseaes.2016.04.004
[6] MUHAMMAD M S,JULIEN B. Seismic geomorphology and evolution of Early-Mid Miocene isolated carbonate build-ups in the Timor Sea, northwest shelf of Australia[J]. Marine Geology,2016,379:224-245. doi: 10.1016/j.margeo.2016.06.007
[7] ZENG H L. Seismic geomorphology-based facies classification[J]. The Leading Edge,2004,23(7):644-688. doi: 10.1190/1.1776732
[8] ZENG H L,ZHU X M,ZHU R K,et al. Guidelines for seismic sedimentologic study in non-marine post rift basins[J]. Petroleum Exploration and Development,2012,39(3):275-284.
[9] 任建业,胡祥云,张俊霞. 中国大陆东部晚中生代构造活动及其演化过程[J]. 大地构造与成矿学,1998,22(2):89-96.
[10] 李顺利,许磊,于兴河,等. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征[J]. 古地理学报,2018,20(6):1023-1032. doi: 10.7605/gdlxb.2018.06.075
[11] 侯国伟,李帅,秦兰芝,等. 西湖凹陷西部斜坡带平湖组源-汇体系特征[J]. 中国海上油气,2019,31(3):29-38.
[12] 于兴河,李顺利,曹冰,等. 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报,2017,35(2):299-314.
[13] 秦兰芝,刘金水,李帅,等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质,2019,39(4):498-504. doi: 10.11781/sysydz201904498
[14] 张兰,汪文基,何贤科,等. 东海西湖凹陷平湖组富煤环境相控储层预测技术[J]. 现代地质,2019,33(2):337-344.
[15] 张兰,李文俊,常吟善,等. 东海某凹陷断陷期重要不整合面特征及其对沉积演化的控制[J]. 海洋地质与第四纪地质,2019,40(4):30-39.
[16] 常吟善,覃军,赵洪,等. 基于米氏旋回理论的高频层序识别与划分:以东海陆架盆地平湖斜坡带宝云亭地区平三段为例[J]. 海洋地质与第四纪地质,2018,39(3):51-60.
[17] 刘英辉,黄导武,段冬平,等. 煤层等时格下中深层储层地震沉积学预测[J]. 沉积学报,2018,36(5):957-968.
[18] 陆俊泽,叶加仁,黄胜兵,等. 西湖凹陷平北地区烃源岩特征及生排烃史[J]. 海洋石油,2009,29(4):38-43. doi: 10.3969/j.issn.1008-2336.2009.04.038
[19] 许红,张海洋,张柏林,等. 南黄海盆地26口钻井特征[J]. 海洋地质前沿,2015,31(4):1-6.
[20] 谭思哲,陈春峰,徐振中,等. 南黄海古生界烃源特征及资源潜力评估[J]. 海洋地质与第四纪地质,2018,38(3):116-124.
[21] 王丽顺,陈琳琳. 东海西湖凹陷下第三系层序地层学分析[J]. 海洋地质与第四纪地质,1994,14(3):35-42.
[22] 冯晓杰. 东海陆架盆地中新生代构造演化特征[J]. 中国海上油气(地质),2003,17(1):33-37.
[23] 武法东. 东海陆架盆地西湖凹陷第三系层序地层与沉积体系分析[M]. 北京: 地质出版社, 2000: 20-41 .
[24] 陈琳琳. 东海西湖凹陷平湖组沉积环境演化[J]. 海洋地质与第四纪地质,1998,18(4):69-78.
[25] ANDREW D M,CHARLENE E M. Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms[J]. Earth-Science Reviews,2001,54:321-348. doi: 10.1016/S0012-8252(00)00041-6
[26] OCTAVIAN C. Principles of Sequence Stratigraphy[M]. Amsterdam: Elsevier, 2006: 35-54.
[27] 刘晓晖,涂齐催,姜雨,等. 双宽地震资料在西湖凹陷R气田裂缝预测中的应用[J]. 海洋地质前沿,2020,36(8):57-64.
[28] 刘亚茹,高顺莉,周平,等. 西湖凹陷转换断裂发育特征及其油气地质意义[J]. 海洋地质前沿,2020,36(10):42-49.