沉积物埋藏深度和碳酸钙含量对南海沉积物干密度的影响

张新康, 贾国东. 沉积物埋藏深度和碳酸钙含量对南海沉积物干密度的影响[J]. 海洋地质前沿, 2022, 38(6): 25-33. doi: 10.16028/j.1009-2722.2021.189
引用本文: 张新康, 贾国东. 沉积物埋藏深度和碳酸钙含量对南海沉积物干密度的影响[J]. 海洋地质前沿, 2022, 38(6): 25-33. doi: 10.16028/j.1009-2722.2021.189
ZHANG Xinkang, JIA Guodong. Burial depth and calcium carbonate content of sediment: impact on the sediment dry bulk density for the South China Sea[J]. Marine Geology Frontiers, 2022, 38(6): 25-33. doi: 10.16028/j.1009-2722.2021.189
Citation: ZHANG Xinkang, JIA Guodong. Burial depth and calcium carbonate content of sediment: impact on the sediment dry bulk density for the South China Sea[J]. Marine Geology Frontiers, 2022, 38(6): 25-33. doi: 10.16028/j.1009-2722.2021.189

沉积物埋藏深度和碳酸钙含量对南海沉积物干密度的影响

  • 基金项目: 国家自然科学基金“南海浮游生态系统对上新世暖期气候的响应及其机制研究”(42030504)
详细信息
    作者简介: 张新康(1997—),男,在读硕士,主要从事海洋地质方面的研究工作. E-mail:1931653@tongji.edu.cn
    通讯作者: 贾国东(1969—),男,博士,教授,主要从事有机地球化学和古海洋学研究工作. E-mail:jiagd@tongji.edu.cn
  • 中图分类号: P736.2

Burial depth and calcium carbonate content of sediment: impact on the sediment dry bulk density for the South China Sea

More Information
  • 在古海洋学研究中,质量堆积速率是反映地质历史时期某种物质沉积通量变化趋势的重要指标。计算质量堆积速率的一个必要参数是沉积物的干密度(DBD)。但是,很多钻孔沉积物的干密度数据往往因采样间隔稀疏而分辨率太低,甚至没有实测数据,为后续研究带来一定限制。前人研究中曾经发现深海沉积物的DBD可以用沉积物中的CaCO3含量进行估算,但这一方法在南海是否可行尚缺乏研究。笔者根据前人经验,对南海ODP184,IODP 349、367、368共4个航次17个站位的DBD、CaCO3含量与样品埋藏深度数据进行了分析,发现沉积物埋藏深度是影响DBD的重要因素,DBD和CaCO3含量仅在南海南部的ODP1143站位表现出良好的关系。而在南海北部及中部可能由于受到不同程度深层流活动的影响,导致沉积环境极不稳定,非碳酸钙组分来源复杂多变,故DBD与CaCO3%的相关性差。在南海南部,以沉积物埋藏深度和CaCO3%为变量,对ODP1143站位用二元多项式拟合出一经验公式,该公式适用于南海南部海域与1143站位有相似沉积环境的沉积物样品干密度的估算。

  • 加载中
  • 图 1  本文涉及站点位置以及南海深层流运移路径示意图

    Figure 1. 

    图 2  南海DBD-沉积物埋藏深度关系和DBD-CaCO3%关系

    Figure 2. 

    图 3  南海北部钻孔中CaCO3%与DBD的相关性分析

    Figure 3. 

    图 4  南海北部、中部及南部DBD-CaCO3%关系对比

    Figure 4. 

    图 5  南海南部1143站位DBD二元拟合效果和残差分布

    Figure 5. 

    图 6  南海南部DBD二元拟合公式计算值误差范围

    Figure 6. 

    表 1  本文站位信息

    Table 1.  Specification of the study sites

    航次航次时间站位经度/(°E)纬度/(°N)水深/m数据点/个
    184 1999年2—4月 1143 113.285 9.362 2 771 180
    1144 117.419 20.053 2 035 143
    1145 117.631 19.584 3 175 60
    1146 116.273 19.457 2 091 181
    1147 116.555 18.835 3 245 24
    1148 116.566 18.836 3 297 196
    349 2014年1—3月 U1431 117.000 15.376 4 237 43
    U1432 116.391 18.352 3 829 16
    U1433 115.047 12.919 4 379 147
    U1434 114.923 13.192 4 009 6
    U1435 116.610 18.556 3 252 27
    367 2017年2—4年 U1499 115.860 18.409 3 760 79
    U1500 116.220 18.305 3 801 53
    368 2017年4—6月 U1501 115.766 18.885 2 852 94
    U1502 116.231 18.465 3 763 32
    U1504 116.242 18.849 2 816 16
    U1505 115.859 18.918 2 916 79
    下载: 导出CSV

    表 2  南海南部不同一元拟合效果比较

    Table 2.  Comparison of different unary fitting methods for the southern South China Sea

    自变量阶数R2RMSE/(g/cm3

    CaCO3%
    10.620.10
    20.620.10
    30.650.09
    沉积物埋藏深度10.6740.09
    20.700.08
    30.740.08
    下载: 导出CSV

    表 3  南海南部不同阶数二元拟合效果比较

    Table 3.  Comparison of different binary fitting methods for the southern South China Sea

    阶数(埋藏深度)阶数(CaCO3%)R2RMSE/(g/cm3
    110.700.08
    210.710.08
    310.790.07
    120.710.08
    220.710.08
    320.800.07
    130.790.07
    230.800.07
    330.800.07
    注:加粗一行数据为最终采用的阶数。
    下载: 导出CSV
  • [1]

    LYLE M W,DYMOND J. Metal accumulation rates in the southeast Pacific — errors introduced from assumed bulk densities[J]. Earth and Planetary Science Letters,1976,30(2):164-168. doi: 10.1016/0012-821X(76)90242-9

    [2]

    CLEMENS S C,PRELL W L,HOWARD W R. Retrospective dry bulk density estimates from southeast Indian Ocean sediments — comparison of water loss and chloride-ion methods[J]. Marine Geology,1987,76(1/2):57-69.

    [3]

    HAMILTON E L. Variations of density and porosity with depth in deep-sea sediments[J]. SEPM Journal of Sedimentary Research,1976,46:280-300.

    [4]

    SIMMONS G R. Subsidence history of basement sites and sites along a carbonate dissolution profile, Leg 115[R]. Proceedings, Scientific Results, ODP, Leg 115, Mascarene Plateau, 1990, 123-126.

    [5]

    SNOECKX H,REA D K. Dry bulk density and CaCO3 relationships in upper Quaternary sediments of the eastern equatorial Pacific[J]. Marine Geology,1994,120(3/4):327-333.

    [6]

    CURRY W B,LOHMANN G P. Late Quaternary carbonate sedimentation at the Sierra Leone Rise (eastern equatorial Atlantic Ocean)[J]. Marine Geology,1986,70(3/4):223-250.

    [7]

    邵磊,李学杰,耿建华,等. 南海北部深水底流沉积作用[J]. 中国科学(D辑:地球科学),2007,37(6):771-777.

    [8]

    王海荣,王英民,邱燕,等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展,2007,17(9):1235-1243. doi: 10.3321/j.issn:1002-008x.2007.09.012

    [9]

    SYKES T J S,RAMSAY A T S. Calculation of mass accumulation rates in the absence of density or porosity measurements[J]. Marine Geology,1995,122(3):173-179. doi: 10.1016/0025-3227(94)00112-X

    [10]

    谢杨冰,吴时国. 南海深水海盆沉积物压实作用及影响因素[J]. 海洋地质与第四纪地质,2017,37(3):37-46.

    [11]

    LIU Z,ZHAO Y,COLIN C,et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews,2016,153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    [12]

    汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质,1998,18(1):1-4,6-7,9-11.

    [13]

    MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis [M]. Cambridge: Cambridge University Press, 2011, 115-164.

    [14]

    CHI G,LIU B. Sedimentary source area and paleoenvironmental reconstruction since late Miocene in the southern South China Sea[J]. Chemie Der Erde,2020,80(1):1-48.

    [15]

    王英民,王海荣,邱燕,等. 深水沉积的动力学机制和响应[J]. 沉积学报,2007,25(4):495-504. doi: 10.3969/j.issn.1000-0550.2007.04.002

    [16]

    WAN S,LI A,CLIFT P D. et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma[J]. Marine Geology,2010,278(1/4):115-121.

    [17]

    GRUETZNER J,UENZELMANN-NEBEN G,FRANKE D. Variations in bottom water activity at the southern Argentine margin:indications from a seismic analysis of a continental slope terrace[J]. Geo-Marine Letters,2011,31(5/6):405-417.

    [18]

    MCCAVE I N,LONSDALE P F,HOLLISTER C D,et al. Sediment transport over the Hatton and Gardar contourite drifts[J]. Journal of Sedimentary Petrology,1980,50(4):1049-1062.

    [19]

    RHEIN M,STRAMMA L,SOND U. The Atlantic Deep Western Boundary Current:water masses and transports near the equator[J]. Journal of Geophysical Research,1995,100(C2):2441-2457. doi: 10.1029/94JC02355

    [20]

    LIU J,XIANG R,CHEN Z,et al. Sources,transport and deposition of surface sediments from the South China Sea[J]. Deep-Sea Research Part I:Oceanographic Research Papers,2013,71:92-102. doi: 10.1016/j.dsr.2012.09.006

    [21]

    HERNÁNDEZ-MOLINA F J. Abyssal plain contourites[J]. Developments in Sedimentology,2008,60:345,347-368.

    [22]

    ZENK W,VISBECK M. Structure and evolution of the abyssal jet in the Vema Channel of the South Atlantic[J]. Deep-Sea Research Part II:Topical Studies in Oceanography,2013,85:244-260. doi: 10.1016/j.dsr2.2012.07.033

    [23]

    李华,王英民,徐强,等. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式[J]. 地质学报,2014,88(6):1120-1129.

    [24]

    周春. 南海东北部深层环流观测研究[D]. 青岛: 中国海洋大学, 2015: 1-107.

    [25]

    郑洪波,阎贫,邢玉清,等. 反射地震方法研究南海北部的深水底流[J]. 海洋学报,2012,34(2):192-198.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1736
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2021-07-16
刊出日期:  2022-06-28

目录