-
摘要:
马里亚纳海沟是西太平洋“沟-弧-盆”构造体系的重要区域,对马里亚纳海沟特征的研究有助于了解海沟各部分间的形成演化差异。基于研究区的沉积物与水深数据,计算了海沟的初始俯冲倾角(β0)与轴线的挠曲(w0),模拟了马里亚纳海沟岩石圈的挠曲,得到了马里亚纳海沟各段的岩石圈有效弹性厚度(Te)。模拟结果显示,马里亚纳海沟的挠曲位置约在40~125 km,挠曲幅度wb约为60~840 m,有效弹性厚度约为5~40 km,初始俯冲倾角β0约为0.5°~5°,轴线的挠曲w0约为1.3~4.7 km,整体变化幅度较大;海沟中段的有效弹性厚度最高,南段的有效弹性厚度相对北段略高;海沟中段被大量不同规模的海山侵入,其挠曲幅度、有效弹性厚度、初始俯冲倾角与轴线的挠曲变化幅度都非常大;海沟南段的轴线挠曲很大,明显高于北段与中段,可能与Caroline洋脊的俯冲作用与Caroline热点的影响有关;俯冲初始倾角与有效弹性厚度、挠曲位置、轴线挠曲没有明显的相关关系。
Abstract:The Mariana Trench is an important area in the evolution of the trench arc basin tectonic system in the Western Pacific Ocean. The study of the characteristics of the Mariana Trench is helpful to understand the differences in the formation and evolution of the trench parts. Based on the sediment and water depth data in the study area, the initial subduction dip angle (β0) and the axis flexion (w0) of the trench were calculated, the lithospheric flexion of the Mariana Trench was simulated, and the lithospheric effective elastic thickness (Te) of the Mariana Trench was obtained. The results show that the flexural position of the Mariana Trench is about 40~125 km, the flexural amplitude wb is about 60~840 m, the effective elastic thickness is about 5~40 km, the initial subduction Angle β0 is about 0.5°~5°, and the flexural w0 of the axis is about 1.3~4.7 km. The effective elastic thickness of the middle trench is the highest, and the effective elastic thickness of the northern trench is slightly higher than that of the southern trench. The middle part of the trench is invaded by a large number of seamounts of different sizes, and the range of deflection, effective elastic thickness, initial subduction dip angle and deflection of axis are very large. The axial flexure of the southern segment of the trench is much higher than that of the northern segment and the middle segment, which may be related to the effect of the subduction of Caroline ridge and Caroline hot spot. There is no obvious correlation between the initial subduction dip angle and effective elastic thickness, deflection position and axis deflection.
-
Key words:
- initial subduction dip angle /
- flexure /
- effective elastic thickness /
- Mariana Trench
-
图 1 洋壳挠曲模型与挠曲计算模型 [25]
Figure 1.
表 1 计算所用参数
Table 1. Parameters used in calculation
参数 定义 数值 地幔密度,kg/m3 3 300 海水密度,kg/m3 1 030 g 重力加速度,m/s2 9.81 E 杨氏模量,Pa 7×1010 ν 泊松比 0.25 表 2 马里亚纳海沟岩石圈弹性薄板模拟结果
Table 2. Simulation results of lithospheric elastic thin plate in Mariana Trench
剖面 有效弹性厚度 /km 海沟轴挠曲w0 /km 初始俯冲倾角β0/(°) 挠曲幅度wb /m 挠曲位置/km RMS/km 北段 1 13 −1.672 2.5 116 62 0.125 2 14 −1.679 1.5 85 81 0.078 3 20 −1.656 1 81 109 0.063 中段 4 19 −1.337 0.5 60 114 0.182 5 24 −1.945 1 94 125 0.373 6 31 −1.845 3.5 604 45 0.368 7 30 −1.986 4 696 42 0.203 8 15 −3.264 4.5 233 68 0.412 9 37 −3.566 5 839 64 0.297 10 5 −3.620 0.5 156 46 0.396 南段 11 16 −4.000 2.5 189 95 0.135 12 22 −4.449 3 231 111 0.153 13 18 −4.671 4 280 100 0.131 -
[1] STERN R J. Subduction zones[J]. Reviews of Geophysics,2002,40:1012.
[2] 刘新华. 西太平洋地区的海洋安全形势与中国的地区性海权[J]. 太平洋学报,2011,19(2):83-92. doi: 10.3969/j.issn.1004-8049.2011.02.010
[3] HALL R,ALI J R,ERSON C D,et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics,1995,251(1/4):229-250. doi: 10.1016/0040-1951(95)00038-0
[4] STERN R J,FOUCH M J,KLEMPERER S L. An overview of the Izu-Bonin-Mariana subduction factory[J]. Inside of Subduction Factory,2003,138:175-222.
[5] 瞿洪宝,郑彦鹏,刘晨光,等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展,2017,35(2):249-257. doi: 10.3969/j.issn.1671-6647.2017.02.009
[6] SDROLIAS M,ROEST W R,MÜLLER R D. An expression of Philippine Sea plate rotation:the Parece Vela and Shikoku Basins[J]. Tectonophysics,2004,394(1/2):69-86. doi: 10.1016/j.tecto.2004.07.061
[7] CONTRERAS-REYES E,OSSES A. Lithospheric flexure modeling seaward of the Chile Trench:i implications for oceanic plate weakening in the trench outer rise region[J]. Geophysical Journal International,2010,182:97-112.
[8] ZHANG F,LIN J,ZHAN W. Variations in oceanic plate bending along the Mariana Trench[J]. Earth and Planetary Science Letters,2014,401:206-214. doi: 10.1016/j.jpgl.2014.05.032
[9] HANKS T C. The Kuril Trench–Hokkaido Rise system:large shallow earthquakes and simple models of deformation[J]. Geophysical Journal of the Royal Astronomical Society,1971,23:173-189. doi: 10.1111/j.1365-246X.1971.tb01811.x
[10] BODINE J H,WATTS A B. On the lithospheric flexure seaward of the Bonin and Mariana trenches[J]. Earth and Planetary Science Letters,1979,43:132-148. doi: 10.1016/0012-821X(79)90162-6
[11] HARRIS R,CHAPMAN D. A comparison of mechanical thickness estimates from trough and seamount loading in the southeastern Gulf of Alaska[J]. Journal of Geophysical Research:Solid Earth,1994,95:9297-9317.
[12] BRY M,WHITE N. Reappraising elastic thickness variation at oceanic trenches[J]. Journal of Geophysical Research:Solid Earth,2007:112.
[13] MUELLER S,PHILLIPS R J. On the reliability of lithospheric constraints derived from models of outer-rise flexure[J]. Geophysical Journal International,1995,123:887-902. doi: 10.1111/j.1365-246X.1995.tb06896.x
[14] CAPITANIO F A,MORRA G. The bending mechanics on a dynamic subduction system:Constraints from numerical modelling and global compilation analysis[J]. Tectonophyics,2012:522-523,224-234.
[15] CAPITANIO F A,MORRA G,GOES S. Dynamics of plate bending at the trench and slab-plate coupling[J]. Geochemistry,Geophysics,Geosystems,2009,10(4):4002-4016.
[16] MCADOO D,MARTIN C F. Seasat observations of lithosphere flexure seaward of trenches[J]. Journal of Geophysical Research,1984,89(B5):3201-3210. doi: 10.1029/JB089iB05p03201
[17] MCADOO D,MARTIN C F,Poulouse S. Seasat observations of flexure:evidence for a strong lithosphere[J]. Tectonophysics,1985,116(3/4):209-222. doi: 10.1016/0040-1951(85)90209-4
[18] 陈美,高金耀,金翔龙,等. 利用大地水准面起伏模拟琉球海沟洋坡岩石圈的挠曲[J]. 海洋地质与第四纪地质,2004,24(4):55-59.
[19] ZHANG F,LIN J,ZHOU Z Y,et al. Intra- and inter-trench variations in flexural bending of the Manila,Mariana and global trenches:implications on plate weakening in controlling trench dynamics[J]. Geophysical Journal International,2018,212:1429-1449. doi: 10.1093/gji/ggx488
[20] ZHANG F,LIN J,ZHOU Z Y,et al. Intra-trench variations in flexural bending of the subducting Pacific Plate along the Tonga-Kermadec Trench[J]. Acta Oceanologica Sinica,2019,38:81-90. doi: 10.1007/s13131-019-1493-4
[21] ZHANG J Y,SUN Z,XU M,et al. Lithospheric 3-D flexural modelling of subducted oceanic plate with variable effective elastic thickness along the Manila Trench[J]. Geophysical Journal International,2018,215(3):2071-2092. doi: 10.1093/gji/ggy393
[22] ZHOU Z Y,LIN J,ZHANG F. Modeling of normal faulting in the subducting plates of the Tonga,Japan,Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening[J]. Acta Oceanologica Sinica,2018,37:53-60. doi: 10.1007/s13131-018-1146-z
[23] ZHANG J Y,MIN X,ZHEN S. Lithospheric flexural modelling of the seaward and trenchward of the subducting oceanic plates[J]. International Geology Review,2020,62(7/8):908-923.
[24] CONTRERAS-REYES E,CORTÉS-RIVAS V,MANRÍQUEZ P,et al. The silent bending of the oceanic Nazca Plate at the Peruvian Trench[J]. Tectonophysics,2021:807. doi: 10.1016/j.tecto.2021.228810
[25] CONTRERAS-REYES E,GARAY J. Flexural modeling of the elastic lithosphere at an ocean trench:a parameter sensitivity analysis using analytical solutions[J]. Journal of Geodynamics,2018,113:1-12. doi: 10.1016/j.jog.2017.11.004
[26] WATTS A B,TALWANI M. Gravity anomalies seaward of deep-sea trenches and their tectonic implications[J]. Journal of the Korean Astronomical Society,1974,36:57-92.
[27] PARSONS B,MOLNAR P. The origin of outer topographic rises associated with trenches[J]. Geophysical Journal International,1978,1(4):707-712.
[28] LEVITT D A,SANDWELL D T. Lithospheric bending at subduction zones based on depth soundings and satellite gravity[J]. Journal of Geophysical Research,1995,100:379-400. doi: 10.1029/94JB02468
[29] HUNTER J,WATTS A B. Gravity anomalies,flexure and mantle rheology seaward of circum-Pacific trenches[J]. Geophysical Journal International,2016,207:288-316. doi: 10.1093/gji/ggw275
[30] CALDWELL J G,HAXBY W F,KARIG D E,et al. On the applicability of a universal elastic trench profile[J]. Earth Planet Science Letter,1976,31:239-246. doi: 10.1016/0012-821X(76)90215-6
[31] TURCOTTE D, SCHUBERT G. Geodynamics-applications of continuum physics to geological problems, 3rd ed[M]. Cambridge : Cambridge University Press, 2002.
[32] HUNTER J, WATTS A B. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches[J]. Geophysical Journal International, 2016, 207(1): 288-316.
[33] STRAUME E O,GAINA C,MEDVEDEV S,et al. GlobSed:updated total sediment thickness in the world's oceans[J]. Geochemistry,Geophysics,Geosystems,2019,20(4):1756-1722.
[34] 邢健,郝天珧,胡立天,等. 对日本俯冲带与IBM俯冲带俯冲特征的地球物理研究:来自重力与震源分布数据的启示[J]. 地球物理学报,2016,59(1):116-140. doi: 10.6038/cjg20160110
[35] 凌子龙,赵俐红,彭祎辉,等. 基于滑动窗口导纳技术反演西太平洋中部岩石圈的有效弹性厚度[J]. 海洋地质与第四纪地质,2021,41(1):138-146.
[36] YANG A,FU Y T. Estimates of effective elastic thickness at subduction zones[J]. Journal of Geodynamics,2018,117:75-87. doi: 10.1016/j.jog.2018.04.007
[37] 杨安,付永涛,李安春. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度[J]. 地球物理学报,2016,59(9):3280-3290.
[38] KALNINS L M,WATTS A B. Spatial variation in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism[J]. Earth and Planetary Science Letters,2009,286(1/2):89-100.
[39] BAI Y L,DONG D D,KIRBY J F,et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation:a case study[J]. Geophysical Journal International,2018,214(1):623-634. doi: 10.1093/gji/ggy162
[40] 刘文潇,李春峰,朱塽,等. 西太平洋岩石圈有效弹性厚度的空间分布与控制因素[J]. 地球物理学报,2021,64(6):1975-1986. doi: 10.6038/cjg2021O0245
[41] 张斌. 马里亚纳俯冲带分段性及其成因研究[D]. 青岛: 中国海洋大学, 2015.
[42] ZHANG Z Y,DONG D D,SUN W D,et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate,western Pacific[J]. International Geology,2020,63(1):1-15.
[43] RUPKE L H,MORGAN J P,HORT M,et al. Serpentine and the subduction zone water cycle[J]. Earth Planet Science Letter,2004,223:17-34. doi: 10.1016/j.jpgl.2004.04.018
[44] FACCENDA M,GERYA T V,BURLINI L. Deep slab hydration induced by bending-related variations in tectonic pressure[J]. Nature Geoscience,2009(2):790-793.
[45] 皇甫鹏鹏. 大洋俯冲和大陆碰撞模式的数值模拟研究[D]. 北京: 中国科学院大学, 2016.