Distribution and ecological risks assessment of heavy metals in surface soils in the areas south of Laizhou Bay
-
摘要:
基于莱州湾以南地区1 600个点位表层土壤样品调查数据,分析其 8种重金属元素的分布特征、来源、生态风险及污染状况。研究结果表明:莱州湾以南表层土壤8种重金属平均质量浓度由大到小依次为Cr>Zn>Ni>Pb >Cu>As>Cd>Hg;重金属高值区主要分布于中西部、西部和西南部地区,东部、东南部和东北部地区相对较低,北部地区含量最低;土壤pH值展示出从南向北升高的趋势。单因子平均污染指数大小顺序为 Ni>As>Cr>Zn>Cu>Cd>Pb>Hg;重金属元素的单因子平均污染指数均<0.7,污染水平属于清洁。单因子潜在生态危害指数依次为Hg>Cd>As>Pb>Cu>Ni>Cr>Zn。研究区大部分区域为低潜在生态风险程度区,中、重及严重潜在生态风险程度区则呈点状、零星分布。土壤重金属元素主要受地质背景控制;其次,人类活动,包括农业生产中化肥和农药的使用,化工、矿山等行业排放的污水以及汽车尾气、轮胎磨损等,也是重金属重要来源。必须加强对莱州湾南部重点地区重金属元素的监测和预警,制定出针对性的治理和修复措施,保证该地区不受重金属污染的威胁。
Abstract:Based on the survey data of surface soil obtained from 1 600 sampling sites in the land areas south of the Laizhou Bay, we analyzed the spatial characteristics, sources, ecological risks, and pollution status of 8 heavy metals. Results show that, in terms of concentration, the 8 elements followed an order of Cr > Zn> Ni> Pb> Cu > As> Cd> Hg. The high-value of heavy metals distribute in the mid-west, west, and southwest of the studied area, and the values are lower in the east, southeast and northeast, and the lowest in the north. The pH value of the soil reveals a rising trend from south to north. Single-factor pollution index of the 8 elements followed an order of Ni > As> Cr > Zn >Cu > Cd > Pb > Hg. The average of single-factor pollution index of the 8 elements are all lower than 0.7, indicating the clean level in China’s national standard of environmental pollution. In terms of the single-factor potential ecological risks, the 8 elements followed an order of Hg>Cd>As>Pb>Cu>Ni>Cr>Zn. Most of the studied areas are of low potential ecological risks. The areas of middle, heavy, and serious potential ecological risks are of punctate or sporadic distribution. The heavy metals in the surface soil were controlled by the geological background in the first place. Next, the heavy metals were brought in by human activities such as chemical fertilizers and agricultural chemicals from agricultural activities and from sewage of local chemical industry and mining, and automobile exhaustion and tire wear. Therefore, it is essential to intensify monitoring and early-warning of heavy metal pollution in the land areas south of Laizhou Bay, and work out case-specific control and remediation measures, to ensure the studied area free from heavy metal pollution.
-
Key words:
- soil /
- heavy metals /
- ecological risks assessment /
- south of Laizhou Bay
-
表 1 重金属的背景参考值和毒性系数[24]
Table 1. Background values and toxicity coefficient of the heavy minerals[24]
Cu Pb Zn Ni Cr As Cd Hg Cin/10−6 21.2 22.9 58.4 26.8 65.2 7.7 0.114 0.032 Tir 5 5 1 5 2 10 30 40 表 2 污染程度和潜在生态危害程度的评价指标
Table 2. The evaluation index to the degree of pollution and potential ecological risks
Cif 单因子污染程度 Eir 单因子生态危害程度 ERI 综合潜在生态风险程度 <1 低 <40 低 <150 低 1~3 中等 40~80 中等 150~300 中等 3~6 重 80~160 较重 300~600 重 ≥6 严重 160~320 重 ≥600 严重 ≥320 严重 表 3 莱州湾以南表层土壤重金属元素含量统计表及背景值
Table 3. Statistics and background values of heavy metals concentration in soils of the areas south of the Laizhou Bay
指标 最大值 最小值 平均值 标准偏差 变异系数 表层土壤背景值 潍坊市 山东省 全国 Cu 149.50 0.30 21.1 7.79 0.37 21.2 24 24 Pb 245.30 11.00 24.7 4.47 0.18 22.9 25.8 23 Zn 4271.20 13.30 67.7 20.71 0.31 58.4 63.5 68 Ni 227.70 8.10 25.5 6.20 0.24 26.8 25.8 26 Cr 413.20 30.10 75.6 13.89 0.18 65.2 66 65 As 21.65 2.41 9.8 2.47 0.25 7.7 9.3 10 Cd 4.05 0.04 0.09 0.02 0.22 0.114 0.084 0.09 Hg 1604.30 2.91 0.026 11.73 0.46 0.032 0.019 0.04 pH 9.85 4.00 7.57 0.69 0.09 7.43 7.7 / 注:/ 为无数据,表中元素含量单位均为×10−6, pH无量纲。潍坊市背景值引自[24];山东省背景值引[25];全国背景值引自[26]. 表 4 莱州湾以南表层土壤重金属含量相关性分析
Table 4. Correlation in heavy metal concentration in soils of the areas south of the Laizhou Bay
Cu Pb Zn Ni Cr As Cd Hg pH Cu 1 Pb 0.300** 1 Zn 0.254** 0.253** 1 Ni 0.471** 0.109** 0.096** 1 Cr 0.399** 0.143** 0.112** 0.741** 1 As 0.248** 0.219** 0.084** 0.092** 0.054* 1 Cd 0.243** 0.238** 0.995** 0.073** 0.093** 0.074** 1 Hg 0.125** 0.084** 0.045 0.029 0.030 0.095** 0.048 1 pH −0.070** −0.103** −0.011 −0.130** −0.096** 0.024 −0.013 0.007 1 注:** 表示 0.01 水平(双侧)上显著相关,* 表示 0.05 水平(双侧)上显著相关。 表 5 莱州湾以南表层土壤重金属单因子污染指数
Table 5. Single-factor pollution index of heavy metal in soils of the study area south of the Laizhou Bay
Cu Pb Zn Ni Cr As Cd Hg 平均值 0.25 0.08 0.27 0.51 0.36 0.37 0.20 0.05 最大值 2.04 0.98 14.24 4.55 1.80 0.87 6.75 1.60 最小值 0.00 0.03 0.05 0.14 0.12 0.06 0.06 0.00 标准差 0.15 0.04 0.38 0.29 0.16 0.11 0.20 0.09 表 6 土壤重金属综合污染指数评价[27]
Table 6. The evaluation index of composite pollution index of heavy metals in soil[27]
等级 内梅罗指数 污染等级 样点数 比例/% I P≤0.7 清洁(安全) 1 489 93.0 II 0.7<P≤1.0 尚清洁(警戒线) 55 3.4 III 1.0<P≤2.0 轻度污染 52 3.2 IV 2.0<P≤3.0 中度污染 3 0.2 V P>3.0 重污染 2 0.1 表 7 莱州湾以南表层土壤重金属单因子潜在生态危害指数
Table 7. Potential ecological risks indicated by heavy metal single-factor indices in soils of the areas south of the Laizhou Bay
重金属 平均值 最大值 最小值 样点分布比例/% Eir<40 40≤Eir<80 80≤Eir<160 160≤Eir<320 Eir>320 低危害 中等危害 较高危害 高危害 极高危害 Cu 5.35 35.26 0.07 100 0 0 0 0 Pb 5.76 53.56 2.40 99.9 0.1 0 0 0 Zn 1.31 73.14 0.23 99.9 0.1 0 0 0 Ni 5.31 42.48 1.51 99.9 0.1 0 0 0 Cr 2.54 12.67 0.92 100 0 0 0 0 As 12.72 28.12 3.13 100 0 0 0 0 Cd 25.69 1 066.51 9.79 95.9 3.6 0.4 0.1 0.1 Hg 43.55 2 005.37 3.63 69.6 23.4 4.9 1.3 0.8 表 8 土壤重金属综合潜在生态风险指数
Table 8. Synthesis potential ecological risks of heavy metal indices in the soil
等级 综合潜在生态危害指数 危害程度 样点数/n 比例 主要污染元素 I ERI<150 低 1478 92.38 Hg、Cd II 150≤ERI<300 中等 100 6.25 Pb、Zn、Ni、Hg、Cd III 300≤ERI<600 重 13 0.81 Hg、Cd IV ERI≥600 严重 9 0.56 Hg、Cd -
[1] ZAIDI A, WANI P, KHAN M. Toxicity of Heavy Metals to Legumes and Bioremediation[M]//OVES M, KHAN M S, ZAIDI A, et al. Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. Vienna: Springer, 2012: 1-27.
[2] WANG K S,CHIANG K Y,LIN K L,et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash[J]. Hydrometallurgy,2001,62(2):73-81. doi: 10.1016/S0304-386X(01)00186-4
[3] NABULO G,YOUNG S D,BLACK C R. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils[J]. Science of the Total Environment,2010,408(22):5338-5351. doi: 10.1016/j.scitotenv.2010.06.034
[4] DONG J,YANG Q W,SUN L N,et al. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site,China[J]. Environmental Earth Sciences,2011,64(5):1317-1321. doi: 10.1007/s12665-011-0992-1
[5] 陈雅丽,翁莉萍,马杰,等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报,2019,38(10):2219-2238. doi: 10.11654/jaes.2018-1449
[6] 骆永明,滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊,2018,33(2):145-152.
[7] 徐艳东,魏潇,夏斌,等. 莱州湾东部海域表层沉积物重金属潜在生态风险评价[J]. 海洋科学进展,2015,33(4):520-528. doi: 10.3969/j.issn.1671-6647.2015.04.010
[8] XU G,LIU J,PEI S F,et al. Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay,China[J]. Environmental Science and Pollution Research,2015,22(15):11634-11647. doi: 10.1007/s11356-015-4393-y
[9] DOU Y G,LI J,ZHAO J T,et al. Distribution,enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay,South China Sea[J]. Marine pollution bulletin,2013,67(1/2):137-145.
[10] WEI B G,YANG L S. A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China[J]. Microchemecal Journal,2010,94(2):99-107. doi: 10.1016/j.microc.2009.09.014
[11] YANG P G,MAO R Z,SHAO H B,et al. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China[J]. Journal of Hazardous Materials,2009,167(1/3):1246-1251.
[12] 王美娥,彭驰,陈卫平. 宁夏干旱地区工业区对农田土壤重金属累积的影响[J]. 环境科学,2016,37(9):3532-3539.
[13] HU B F,WANG J Y,JIN B,et al. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta[J]. Environmental Science and Pollution Research,2017,24:19816-19826. doi: 10.1007/s11356-017-9516-1
[14] JIANG Y F,GUO X. Multivariate and geostatistical analyses of heavy metal pollution from different sources among farmlands in the Poyang Lake region,China[J]. Journal of Soils and Sediments,2019,19(5):2472-2484. doi: 10.1007/s11368-018-2222-x
[15] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2021-08-01]. http://www.gov.cn/govweb/foot/2014-04/17/content_2661768.htm
[16] China State Council (CSC). Chinese gov't vows to curb soil pollution[EB/OL]. [2021-08-02]. http://www.china.org.cn/environment/2012-10/31/content_26964743.html.
[17] 张怀志,冀宏杰,徐爱国,等. 潍坊市菜地重金属调查与环境风险评价研究[J]. 生态环境学报,2017,26(12):156-162.
[18] 曹文涛,吴泉源,王菲,等. 基于野外实测光谱的潍北地区土壤全盐量监测研究[J]. 土壤通报,2016,47(2):265-271.
[19] 苏莉莉,李媛媛,王晓立,等. 近56年潍坊市降水量变化特征分析[J]. 安徽农业科学,2018,46(1):157-159. doi: 10.3969/j.issn.0517-6611.2018.01.047
[20] 胡云壮,李红,李影,等. 山东莱州湾南岸典型剖面海(咸)水入侵过程的水文地球化学识别[J]. 地质调查与研究,2015,38(1):41-50. doi: 10.3969/j.issn.1672-4135.2015.01.006
[21] NEMEROW N L. Accelerated waste water oxidation pond pilot plant studies[J]. Air and water pollution,1963,7(2/4):395-397.
[22] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research,1980,14(8):975-1001. doi: 10.1016/0043-1354(80)90143-8
[23] LV J S,ZHANG Z L,LI S,et al. Assessing spatial distribution,sources,and potential ecological risk of heavy metals in surface sediments of the Nansi Lake,eastern China[J]. Journal of Radioanalytical and Nuclear Chemistry,2014,299(3):1671-1681. doi: 10.1007/s10967-013-2883-2
[24] 庞绪贵,陈钰,刘汉栋,等. 山东半岛蓝色经济区土壤地球化学基准值与背景值[J]. 山东国土资源,2014(8):21-26. doi: 10.3969/j.issn.1672-6979.2014.08.005
[25] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[26] 鄢明才,顾铁新,迟清华,等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探,1997,21(3):19-97.
[27] 国家环境保护总局. 土壤环境监测技术规范(HJ/T166—2004)[S]. 北京: 中国环境出版社, 2004: 22.
[28] 秦鱼生,喻华,冯文强,等. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报,2013,33(19):6335-6344.
[29] BOLAN N,KUNHIKRISHNAN A,THANGARAJAN R,et al. Remediation of heavy metal(loid)s contaminated soils:to mobilize or to immobilize?[J]. Journal of Hazardous Materials,2014,266:141-166. doi: 10.1016/j.jhazmat.2013.12.018
[30] 范德江,杨作升,毛登,等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质,2001,21(4):7-12.
[31] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探,2014,38(6):1097-1106.
[32] VEGA F A,COVELO E F,ANDRADE M L. Competitive sorption and desorption of heavy metals in mine soils:influence of mine soil characteristics[J]. Journal of Colloid and Interface Science,2006,298(2):582-592. doi: 10.1016/j.jcis.2006.01.012
[33] 徐仁扣. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2013: 32-33.
[34] 胡宁静,石学法,黄朋,等. 渤海辽东湾表层沉积物中金属元素分布特征[J]. 中国环境科学,2010,30(3):380-388.
[35] 叶然,江再昌,郭清荣,等. 洋山深水港区海域秋、冬季沉积物中重金属来源分析及生态风险评价[J]. 海洋通报,2015,34(1):76-82. doi: 10.11840/j.issn.1001-6392.2015.01.011
[36] 王定勇,石孝洪,杨学春. 大气汞在土壤中转化及其与土壤汞富集的相关性[J]. 重庆环境科学,1998,20(5):22-25.