日本海域天然气水合物试采结果对比分析

邵明娟, 王平康, 吴庐山, 张炜, 田黔宁. 日本海域天然气水合物试采结果对比分析[J]. 海洋地质前沿, 2022, 38(12): 8-15. doi: 10.16028/j.1009-2722.2021.238
引用本文: 邵明娟, 王平康, 吴庐山, 张炜, 田黔宁. 日本海域天然气水合物试采结果对比分析[J]. 海洋地质前沿, 2022, 38(12): 8-15. doi: 10.16028/j.1009-2722.2021.238
SHAO Mingjuan, WANG Pingkang, WU Lushan, ZHANG Wei, TIAN Qianning. A comparative analysis of offshore gas hydrates production test in Japan[J]. Marine Geology Frontiers, 2022, 38(12): 8-15. doi: 10.16028/j.1009-2722.2021.238
Citation: SHAO Mingjuan, WANG Pingkang, WU Lushan, ZHANG Wei, TIAN Qianning. A comparative analysis of offshore gas hydrates production test in Japan[J]. Marine Geology Frontiers, 2022, 38(12): 8-15. doi: 10.16028/j.1009-2722.2021.238

日本海域天然气水合物试采结果对比分析

  • 基金项目: 中国地质调查局项目“国际地学情报信息跟踪与分析”(DD20221794)
详细信息
    作者简介: 邵明娟(1982—),女,博士,高级工程师,主要从事地学文献情报方面的研究工作. E-mail:shaomingjuan@163.com
  • 中图分类号: P736;P744.4

A comparative analysis of offshore gas hydrates production test in Japan

  • 截至目前,只有中国和日本实施了海域天然气水合物的试采,了解日本的海域水合物试采中遇到的问题及其对问题的分析情况,有助于中国下一步的水合物研究和开发工作。为了深入认识日本于2013年和2017年在日本海域南海海槽分别实施的两次试采,介绍了两次试采的部署实施情况及实际产气情况,梳理了日本对两次试采中出现的问题及其针对问题的分析研究成果,对比了两次试采中3口生产井的产气情况。发现日本两次试采都没有解决实际产气与预测结果存在差异的问题,认为加强对水合物储层特征和物理特性的认识是解决上述问题的关键;另外,水合物的生产是一个综合的过程,防砂、压降过程、排水等互相影响,在解决这些问题时应综合考虑,并应寻找稳产需要的各项生产参数的平衡点。

  • 加载中
  • 图 1  两次(2013和2017年)海域试采的井口位置和电阻率测井数据及相应的沉积单元[5]

    Figure 1. 

    图 2  利用实测温度和密度剖面推导得出的AT1-P、AT1-P3和AT1-P2井的产气(红色)和产水(蓝色)情况[8]

    Figure 2. 

    图 3  AT1-P、AT1-P3和AT1-P2井单位压降和单位生产层段条件下产水率的时间变化情况(a)以及AT1-P、AT1-P3和AT1-P2井单位压降和单位生产层段条件下产气率的时间变化情况(b)[8]

    Figure 3. 

    图 4  2013年第1次海域试采中实际产气与预测结果对比[14]

    Figure 4. 

    表 1  2013和2017年两次海域试采的部署实施情况对比[13]

    Table 1.  Comparison of deployment and implementation of 2013 and 2017 production tests[13]

    第2次海域试采第1次海域试采
    作业平台 “地球号”深海钻探船 “地球号”深海钻探船
    试采海域 第二渥美海丘,与第1次试采在位置和地质条件等方面接近 第二渥美海丘
    井位部署 1口地质调查井,2口生产井,2口监测井 1口生产井,2口监测井,1口取芯井
    生产试验系统 采用了重量更轻(约120 t)、更便于重新安装和切换作业、以及允许更大船偏距的修井立管系统,主要由立(套)管、紧急脱离装置(EDP)和防喷装置(WCP)等构成 使用了“地球号”的钻探设备以及防喷器,但该钻探设备的重量较大(超过300 t),断开、重新安装以及切换作业非常困难
    气水分离 对气水分离系统作了重新设计,如使用内径较大的井(第1次试采为9.625″,第2次试采为13.375″)来降低流速,以及改进设备的放置等来提高气水分离效率 利用举升分离器使产出水和水合物分解产生的气体在井下分离,并分别通过2条流动管线举升至海面
    防砂装置 采用了利用形状记忆聚合物(SMP)的膨胀封堵井壁与地层间环形空间的GeoFORM防砂系统。为了测试不同防砂装置的效果,将使用两种型号的GeoFORM防砂系统:一种是下入井底前就预先膨胀;另一种是在井底才膨胀 采用了裸眼砾石充填防砂措施,但砾石的移动破坏了筛网并进而造成了出砂
    井中监测 监测井中进行温度和压力的实时监测;生产井中进行温度和压力的实时监测 监测井中仅进行了温度的实时监测;生产井中进行了温度的实时监测,并在几个点测量了压力
    环境监测 海底溶解甲烷浓度变化的监测;海底地形变化的监测 海底溶解甲烷浓度变化的监测;海底地形变化的监测
    其他监测 四分量地震勘探和时移地震勘探 四分量地震勘探和时移地震勘探
    下载: 导出CSV

    表 2  2013和2017年两次试采中3口生产井生产情况对比

    Table 2.  Comparison in production performance of the three production wells in 2013 and 2017 production trials

    AT1-P井AT1-P3井AT1-P2井
    压降幅度/MPa9.27.85 约5.4
    产气率/(m3/d)20 000 3000~4000 10000
    产水率/(m3/d)20070~90 300~500
    单位压降单位层段下的产气率
    出砂严重
    生产周期/d6 12 ≥24
    下载: 导出CSV
  • [1]

    BEAUDOIN Y C, WAITE W, BOSWELL R, et al. Frozen heat: a UNEP global outlook on methane gas hydrates. Volume 1 [R]. United Nations Environment Programme, GRID-Arendal, 2014.

    [2]

    BOSWELL R,COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science:EES,2011,4(4):1206-1215.

    [3]

    TAMAKI M,FUJII T,SUZUKI K. Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern Nankai Trough,Japan[J]. Energies,2017,10(10):1678. doi: 10.3390/en10101678

    [4]

    FUJII T, NOGUCHI S, TAKAYAMA T, et al. Site selection and formation evaluation at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan[C]//75th EAGE Conference and Exhibition. London, 2013: 10-13.

    [5]

    KONNO Y, FUJII T, SATO A, et al. Influence of flow properties on gas productivity in gas-hydrate reservoirs: what can we learn from offshore production tests?[J] Energy and Fuels, 2021, 35(10): 8733-8741.

    [6]

    张炜,白凤龙,邵明娟,等. 日本海域天然气水合物试采进展及其对我国的启示[J]. 海洋地质与第四纪地质,2017,37(5):27-33. doi: 10.16562/j.cnki.0256-1492.2017.05.003

    [7]

    FUJII T, SUZUKI K, TAMAKI M, et al. The election of the candidate location for the second offshore methane hydrate production test and geological findings from the pre-drilling operation, in the eastern Nankai Trough, Japan[C]//The 9th International Conference on Gas Hydrate. Denver: 2017.

    [8]

    YAMAMOTO K,WANG XIAOXING,TAMAK M,et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances,2019,9:25987-26013. doi: 10.1039/C9RA00755E

    [9]

    YU T, GUAN G Q, ABUDULA A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan[J]. Applied Energy, 2019, 251: 113338.

    [10]

    YAMAMOTO K,WANG X X,TAMAK M,et al. The second offshore production test of methane hydrates in the eastern Nankai Trough and site characterization efforts[J]. Fire in the Ice,2019,19(1):9-15.

    [11]

    张炜,邵明娟,田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术,2017,45(5):98-102.

    [12]

    COLLETT T S. Gas hydrate production testing: knowledge gained[C]//Offshore Technology Conference. Texas, USA: 2019.

    [13]

    中国地质图书馆. 日本第二次海域甲烷水合物试采情况概述(一)[Z]. 海洋地质信息-天然气水合物勘查与试采专刊, 2017: 1-8.

    [14]

    KONNO Y,FUJII T,SATO A,et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan:toward future commercial production[J]. Energy and Fuels,2017,31(3):2607-2616. doi: 10.1021/acs.energyfuels.6b03143

    [15]

    YAMAMOTO K,KANNO T,WANG X X,et al. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advances,2017,7(10):5554-5577. doi: 10.1039/C6RA26487E

    [16]

    YAMAMOTO K, KONNO Y, WANG X X, et al. Thermal data analysis to investigate mass and heat transport during methane hydrate dissociation processes[C]//Proceedings of the Sixth Biot Conference on Poromechanics, Paris, 2017: 2049-2056.

    [17]

    KONNO Y,NAGAO J. Methane hydrate in marine sands:its reservoir properties,gas production behaviors,and enhanced recovery methods[J]. Journal of the Japan Petroleum Institute,2021,64(3):113-122. doi: 10.1627/jpi.64.113

    [18]

    SAKURAI S,NISHIOKA I,MATSUZAWA M,et al. Issues and challengers with controlling large drawdown in the first offshore methane hydrate production test[J]. SPE Production and Operations,2017,32(4):500-516.

    [19]

    YAMAMOTO K, MIZUGUCHI. Studies on sand production phenomena, JOGMEC oil and gas technical activity report[R]. Tokyo: JOGMEC, 2015, 123-124.

    [20]

    YAMAMOTO K, NAKATSUKA Y. Solutions for technical issues (2) sand control, JOGMEC oil & gas technical activity report[R]. Tokyo: JOGMEC, 2018: 155-158.

    [21]

    MH21 Research Consortium. Japan's methane hydrate R&D program comprehensive report of phase 2 & 3 research results[R]. Tokyo: MH21 Research Consortium, 2019: IV69-IV75.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  501
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2021-09-02
刊出日期:  2022-12-28

目录